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THE TWO ENGINEERINGS

Performances in designs

Few Data for Model Calibration

Nominal
Physics-Based
Model

Nominal
Loading

Design based on
the predictions of
performances

Performances in operation

Real load
T %1

Prediction 7>t

World is changing. Today we do not
sell aircraft engines, but hours of
flight, we do not sell electric drills but
good quality holes, We are
nowadays more concerned by the
performance management than by
the products themselves ...

PREDICTING
FAST & WELL




INTRODUCTION: three levels of digitalization as proposed by Charbbel FARHAT
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As built or
as practiced
Digital replica



INTRODUCTION: Digital Twin instance — anatomy and function

Physical asset (or process)

ﬁ Useful data O

As builf or
as practiced
Digital replica

Based on:

o the best available multi-physics,
multiscale & probabilistic
computational models

o sensor data

To mirror & predict the functioning and
performances over the life cycle of the
associated physical asset.



INTRODUCTION: Digital Twin Types

d the digital twin prototype

designs, analyses and
processes used to realize
the physical product

digital twin of each
individual instance of the
product once it is
manufactured

= » O O allows for a larger set of data to be

NES) AN )| mmmm N collected and processed for interrogation

- - about the physical product.
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THE LIMITS OF THE EXISTING PARADIGMS

Data

@ Physics
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The usual simulation-based paradigm fails to perform diagnosis, prognosis and decision
making when addressing complex systems of systems because of

. Physics-based: the lack of fidelity of state-of-the-art models, and the lack of
efficiency related to their solution procedures.
. Data-driven: the availability of data, its quality, as well as the limitations related to the

extrapolation or the ability to explain the predictions offered by the frained models.

The hybrid paradigm conciliates both paradigms, knowledge and data enrich mutually,
reducing the amount of data, driving their collection, enabling explaining and certifying
predictions and decisions, accounting for human and societal interests and constraints.




THE HYBRID PARADIGM

The hybrid paradigm conciliates both
paradigms, knowledge and data enrich
mutually, reducing the amount of data, driving
their collection, enabling explaining and
certifying predictions and decisions, accounting
for human and societal interests and constraints.

Reality = Knowledge + Ignorance
-

Physics-based Data-driven

—

Real-time physics

Real-time frugal ML



A SUCCESFULLY APPLIED HAI TECHNOLOGY FOR PREDICTING FAST & WELL

Physics—Based Model Physical asset

Data
collection

FEM

MACHINE
LEARNING
TECHNIQUES
Ignorance
MOR
model

dx
dt

— fphysics—based(aj, Z) e fdata—driven (ZE, Z)



PHYSICS BASED MODELS

A representation of the universal governing laws of nature complemented with
phenomenological behavior relationships

Linear & Nonlinear Elasticity Electromagnetism & Acoustics Fluid Dynamics

shutterstock.com - 2311455077

minutes, hours, ... hours, days, ... days, weeks, ...

 Expensive but accurate
 Cheaper by using Model Order Reduction



MODEL ORDER REDUCTION AND THE “ART OF SURROGATING”

Active Learning
* Goal-oriented GP

 Extended Fisher Information
 Tensor decompositions
 |nformation surrogates

Data Reduction
* Linear (PCA)

* Nonlinear:

* Manifold learning

 Autoencoders

%3
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Modelling

N

Design of Experiments
& Simulations

P

Solutions
compression

.‘p

Interpolation
techniques

J

Parametric
Model

7

Model
Exploration

MOR /

Surrogate
dx physics—based data—driven
E:f (x,z)+ f (x,2)

Regression (informed)
* Regularized Lineal Polynomial

e Elastic Net, Ridge, Lasso, ...
* Nonlinear:

* NN-based

* Optimal transport
Postprocessing

* Data analytics

* Optimizers

* Uncertainty propagation

* |nversion / Data assimilation
e Control



REGULARIZED POLYNOMIAL REGRESSIONS

N iy, By, U Linear regression
i@ Linear approximation
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REGULARIZED POLYNOMIAL REGRESSIONS
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VARIANTS: Separated Representation in High-Dimensional Settings
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Standard regression

B Overfitting

B Can be alleviated by
using orhogonal bases
on structured grids or

by using kriging

B Multi-parameters
w-data issues

VARIANTS: SUMMARY

f SSL-PGD\

Sparse Subspace
Learning based PGD

+ degree
+ sampling

B Orthogonal hierarchical
bases on structured
grids

B Adaptive enrichment

B [nterpolation property

B Separated form

B Amount of data in high
dimensions or high
degree approximations

B | evel 0 approximation:
9P #data

K s-PGD \

Sparse-PGD

B Sparse sampling ~ #P

B Modal Adaptivity -MAS

B Moderately nonlinear
regressions

B Separated form

B Avoids overfitting -MAS

B Works @ low-data limit

@ution smoothiny

/ rs-PGD \

Regularized Sparse
PGD

0 CcRP

W Sparse sampling ~ #P

B Elastic-Net (combining
Ridge & Lasso
regularizations

B Nonlinear regression

B Separated form

B Avoids overfitting

B Works @ low-data limit

l\l—lyperparameters /

/ s2-PGD \

Doubly Sparse
PGD

QO cCRP

W Sparse sampling ~ #P

B Sparse dimensions
search & LASSO
regularization

® Modal Adaptivity -MAS
in the other dimensions

B Nonlinear regression

B Separated form

B Avoids overfitting

wrks @ Iow-dataw

GN OVA- PGB

ANOVA-based
rs-PGD / s2-PGD

B Anchored ANOVA
orthogonal bases in
each dimension/ 1D @
rs-PGD, s2-PGD or
interpolative.

H rs-PGD in correlated
dimension (residual) @

B Nonlinear regression

B Separated form

B Avoids overfitting

B Works @ low-data limit

B Parameters selection

B Parameteres sensibility

B Sampling:
k#ZP. and ~ #Py




PHYSICS IN REAL TIME




ML/AI TECHNICAL POINTS

Ignorance
model
dx physics—based data—driven
ﬁzf (x,2) + f (2, 2)

Regularized polynomial regressions, GP, DT, RF, SVR, ...

rNN, LSTM, ResNET, NeuralODE, DeepONet, Reservoir computing, Koopman...

Transformers

Autoencoders

PINN, SPNN, PANN, ...




ML/AI TECHNICAL POINTS

Ignorance
model

9@? __prhysics—Jbased( Z) 4_cfdatar—driven( Z) E
dt x’ o :

1 | Encoder SPNN Decoder

N Do

:

ZG . ) .'t, ZSPNN
t o Latent reduced space W &t+l

Physically sound, self-learning

digital twins for sloshing fluids Fom LEJVER) T MYz, 2(0) =2

\; W with
) . Poisson matrix: Friction matrix:  L(z)-vS(z) =0,
B. Moya, I. Alfaro, D. Gonzalez, F. Chinesta, E. Cueto reversibility ireversibility  az(z) . VE(z) = 0.
Zn4+1 — Zn

At = L(zn+1a Zn)DE(z-n+1-, Zn) At M(zn-(-h zn)DS(Zn+17 zn)

i Zarmeonod unizar.es

GENERIC

o = {L, M, DE, DS} = argmin ||Z< ) _ zmeasH
Jres

with DE=4Az
DS = Bz




TRANFORMER HYBRID TWIN INSTANCE

d_.fl? — fphysics—based(sz) 14 fdata—driven(sz)

dt

[ ]
Toup aéro Testing+integration: HT Oil temperature estimation for a RTE transformer

Analyseur 60 41 —— Measured top-oil (C)
degaz —— Estimated top-oil (C) l
[ ) S I
T 50 - Error ! “
] =y inf aéro | ‘ |
T Huile inf ,
amb \ ﬁ
40 4 ' | | |
[
' 1
| !
60 - 30 | | [
0\
20 A
40
o 10 A
°
2 201
©
2 ]
IS
'G_J
0 i _10 R T T T T T T T
0 200 400 600 800 1000 1200
—— Measure top-oil (°C) Time(h)
—204 —-- Simulated top-oil (°C)
—— Discrepancy (°C)
0 1000 2000 3000 4000 5000 6000

Time (h)



RESEARCH TOPICS

| - MODEL ORDER REDUCTION: LEGO-LIKE & MULTI-TIME

I - RANK REDUCTION AUTOENCODERS / CONSTRAINTS IN THE LATENT SPACE

11l - LEARNING PARSIMONIOUS PARAMETRIC (DYNAMICAL) MODELS

IV - LEARNING HIERARCHICAL MULTI-TIME MODELS
V - GENERATIVE Al for GENERATIVE DESIGN

VI - GRAPHS NN: SHM, MULTI-PHYSICS, T-GCN & EVOLVING GCN, ...

VIl - INDUCTIVE BIASES

VIl - QUANTUM COMPUTING
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CNRSQ@CREATE

International research centres set up by top global institutions worldwide in Singapore:

2007: Massachusetts Institute of Technology Antimicrobial resistance, sustainable technologies for agricultural precision.
2010: Swiss Federal Institute of Technology, Zurich Future Cities, Future Resilient Systems, Future Health Technologies.
2010: Hebrew University of Jerusalem New materials and fabrication mainly via Additive Manufacturing processes.

2011: Technical University of Munich Food Tech, Med Tech, Energy Tech

2012: Shanghai Jiao Tong University Environmental science, public health, marine economy, carbon capture, coast protection.
2012: University of California, Berkeley Energy-efficient sustainable tropical buildings.

2013: Cambridge University Carbon reduced industries, sustainable reaction engineering, low-carbon options in the maritime sector.
2017: University of lllinois at Urbana-Champaign Cyberphysical systems security, Al & cybersecurity, applied cryptography.
2019: French National Centre for Scientific Research Hybrid Al & digital twins.

2024: Imperial College London Security of medical devices and wearables
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City Digital Twin AN A THALES
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FROM RESEARCH TO APPLICATION

INFORMED PEOPLE / SERVICES

ay CONTROL TOWER
HYBRID TWIN
SYSTEM OF SYSTEMS

HYBRID TWINS
COMPONENTS & SUBSYSTEMS
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HAI BUILDER

KNOWLEDGE

IMPLEMENTABLE ALGORITHMS & METODOLOGIES

DESCARTES WORKPAGES RESEARCH
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ENVIRONMENTAL DIGITAL TWIN

- —

Augmented Digital Energy
Marina Bay Twin

Remote Sensing Drone Trajectory Emergency
Planning crisis
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WIND MAP

Sol_U Magnitude
00e+002 4 6 8 10 12 14 16 18 20 22 2.4e+0]

Interest of having
a wind map at the
city level

Inferring emissions dispersion SLA

SINGAPORE

Inferring air CIUCI“Ty LAND AUTHORITY 2

Inferring temperature and o, 0
thermo-convective flows §

Drone trajectory optimal o %
planning HTX

... and many others ... G./i

get it right

| .
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WIND MAP

-:4' " Dominant wind direction
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Available forecast is too coarse
for providing local (street level)
iInformation on the wind
velocity.

\ b | Y ;
@@ 3| SKANDAR PU;[ERI
\“ S \ \ - ’ .

However, it provides the :
boundary condifions for district- 5 ‘ A\
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That solution is computationally
too expensive
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WIND MAP

: : : Marina Bay Wind-map
Direction Intensity

Properties (aOparametricsolutionFilt: =

[ Reload Python Module
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Representation Surface

Coloring
Solid Color
®: Edit
Scalar Coloring

v Map Scalars
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Styling
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\ Line Width 1

Render Lines As Tubes
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EMERGENCY CRISIS - PLUME DISPERSION

../"'I

Boat Leak " : : . N . o »
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CONCLUSION

Hybrid Al overpasses usual physics-based
and data-driven paradigms

Physics-based allows better explaining
solutions and decisions

Physics-based models drive data collection

Physics-based models enable to reduce
drastically the amount of data

P @

Al enables to enhance
physics-based models' accuracy

Al
lall

physics-based models’ solutions

@CREATE

Singapore




	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21 CNRS@CREATE
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30

