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Motivation. In recent years, considerable progress has been made in the implementation of

decision support procedures based on machine learning methods through the exploitation of very

large databases and the use of learning algorithms. In the industrial environment, the databases

available in research and development or in production are rarely so voluminous and the question

arises as to whether in this context it is reasonable to want to develop powerful tools based on

artificial learning techniques. This talk presents research work around transfer learning and

hybrid models that use knowledge from related application domains or physics to implement

e�icient models with an economy of data. Several achievements in industrial collaborations will

be presented that successfully use these learning models to design machine learning for industrial

small data regimes and to develop powerful decision support tools even in cases where the initial

data volume is limited.
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Introduction The success of ML models

Data Sources & several Successes of "ML/AI" models

I Imagenet is a huge open source database

containing more than

14.10
6

labeled images for 10
3 categories,

available for object detection and

image classification at a large scale,

... "quite expensive" labeling e�ort.

Figure – ResNet : a Convolutional Neural Network for image classification (credit :Resnet)

Top-performing deep architectures are trained on massive amounts of labeled data.

I DeepL relied on the hudge French-English

Linguee dictionnary.

I GraphCast Weather forecast
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Introduction The success of ML models

Classical Backbone for Supervised Machine learning App.

1. Input/ output (X ,Y) (Features, labels set) defined by the operational need.

Ex : X ∈ Rd
, ...Y ∈ R, ...Y ∈ {0, 1}...

2. Data set. S = {(xi , yi)}m
i=1
∼ Dm

a learning/training sample of m iid pairs.

with D an unknown joint probability distribution on the product space X ⊗ Y

3. Model H = {hθ|hθ : X → Y} a hypothesis class, θ parameter

classifiers or regressors depending on the nature of Y .

4. Loss function `(y, hθ(x)) providing a cost of hθ(x) deviating form the true output y ∈ Y .

The best hypothesis is the one that minimizes the true risk, consequently, generalizes well :

RD
`(hθ) = E

(x,y)∼D
[`(hθ(x), y)]

The goal of learner consists of finding a good hypothesis function hθ ∈ H that captures in the

best way possible the relationship between X and Y .

hθopt
= arg min

hθ
RD

`(hθ)

In pratice : Empirical risk optimization, large training sample, regularization, sparsity,...
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Introduction ML in industry

From Industrial needs

.

to Transfer Learning
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Introduction ML in industry

Motivation 1. ML for Automatic Elderly fall detection.

Objective.

The Tarke� Floor in motion application tends to detect

automatically falls based on sensor information and

then trigger an alarm if necessary.

From a first Proof Of Concept (POC) to deployment :

1. Data. As it is not possible to gather large data base with falls of elderly people, a first

supervised data base is created with young volunteers containing fall / no fall events.

2. Predictive models. POC to choose and evaluate the performance of a ML model to detect fall

on previous data (performances? true detection, false alarm...).

3. Transfer learning. How to transfer the previous model for elderly care...to a new population

given few labeled data?

4. Budgeted learning. ... and what about in a real environment...

[Minvielle et al., 2017], [Minvielle et al., 2019], [Mounir et al., 2021]
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Introduction ML in industry

Motivation 2. ML for Automatic tire wear detection

AI IdF 2019 Challenge organized by the IDAML chair

in collaboration with Michelin

Industrial objectives :
Design an application for the

1/ detection and localization in an image

of a "new generation" wear indicator

2/ Estimation of the wear level

Data base : 1000 tire images with

-various tire views,

-di�erent lighting conditions,

-with and without wear indicator (4 levels).

Learning : 500 labeled examples

(tire images, wear indicator, boundingbox posiiton)

→ Blind Evaluation : 500 labeled images.
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Introduction ML in industry

Motivation 3. ML for Product Design.

Industrial application in collaboration with Michelin, EDF

I New products are regularly manufactured with a long and costly development.

I Relative small data sets are gathered during the development of products as characteristics

(color, shape, weight...) and performances.

Is-it possible to predict the performances of a new tire line

given data previously gathered from other lines ?

[Richard et al., 2021], [de Mathelin et al., 2021]
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Introduction ML in industry

Machine Learning in the industry

Main observations :

I O�en small, moderate, evolving database. Ex. manufacturing process.

I Few or not labeled data. Ex. Few production defaults.

I labeled-data is o�en di�icult and time-consuming to acquire.

Ex. Experimental design to help selecting costly observation outputs.

I In many real-world applications, historical (training) data and newly collected (test) data

may o�en exhibit di�erent statistical characteristics.

I In many ML scenarios, training and test samples are supposed to be generated by the same

(unknown) probability distribution.

I Needs for monitoring and diagnosis based on machine learning (ML) .

I Makes sense to re-use knowledge gained from related but distinct datasets.

Need of Transfer Learning, domain adaptation, few shot learning...

Transfer learning : the model can be pre-trained on data from a specific domain and then adapted

to meet needs of a given task.
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Transfer learning & Domain adaptation

Transfer learning in industry.

1. Introduction

The success of ML models

ML in industry

2. Transfer learning & Domain adaptation

Definition

Model-based TL

Feature-based TL

Instance-based TL

Mixing strategies

Theoretical setup

3. Knowledge in ML ... towards Physical models

Knowledge in ML

4. To conclude...From theory to practice !
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Transfer learning & Domain adaptation Definition

The Transfer learning framework

I Data collections : Source & Target
1. Source data S .

XS ⊗ YS the source input and output spaces associated with S
SX the marginal distribution of XS , tS the source learning task

2. Target data T
XT ⊗ YT the Target input and output spaces associated with T
TX the marginal distribution of XT , tT the Target learning task

∆ Source and Target data are not drawn from the same distribution.

I Focus on the Target Risk. RT `(h) = E[`(h(x), y)]
(x,y)∼T

with ` the loss function.

I Supervised data or calibrated Model available for the source domain (enough data).

Transfer learning aims to improve the learning of the target predictive function :

fT : XT → YT for tT using knowledge gained from S where S 6= T

S 6= T (joint distributions) implies several cases :

• SX 6= TX i.e. XS 6= XT (spaces) or SX (X) 6= TX (X) (laws) or

• tX 6= tT (i.e. YS 6= YT (target task) or S(Y/X) 6= T (Y/X) (conditional law)

... Seems to be a hard problem...

Success stories ?... Theoretical guaranties ? Assumptions?, Negative transfer ? ....

Answers to the industrial partners.... open source algorithms...
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Transfer learning & Domain adaptation Definition

Illustration of the Need of Transfer for Learning Machine

Transfer learning aims at providing ML models with a good generalization capability on a Target

domain ( same domains, di�erent domains).

Target domain (ex I).

Same Domain {X , P(X)} &

task T = {Y, P(Y |X)}.

Figure – High Prediction capability.

Target domain (ex II).

Di�erent Domain & same task.

Figure – Low Prediction capability

(no transfer at this stage)

P(x, y) = P(y/x) * P(x)
Joint distribution

di�erences concept shi� covariate-shi�
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Transfer learning & Domain adaptation Definition

Transfer Learning & Domain adaptation Methods

Several approaches to transfer knowledge from Source to Target domain.

I Model-based. Transfer the model parameters learnt on the source data to the target model.

- Train model available, not necessary the source data- .

I Feature-based. Find a new representation space to bring feature spaces closer.

-Source and Target Input data available-.

I Instance-based. Re-weight the source samples to bring the distributions closer.

-Source and Target Input data available-.

Theoretical guarantees ?

For exemple on the Target Risk given the source risk.

Exemples of Industrial needs and success stories.

I Model-based : Image based tire wear estimation based on Deep architecture (Michelin)

(Resnet...), Automatic fall detection based on decision trees/ RF (Tarke�).

I Feature-based : Domain adversarial neural networks (EDF, Michelin)

I Instance-based : Multi-source domain adaptations for Product design (Michelin) or

Electricity prediction (EDF)
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Transfer learning & Domain adaptation Model-based TL

Transfer learning

Model-based

Transfer learning

Feature-based

Transfer learning

Instance-based
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Transfer learning & Domain adaptation Model-based TL

Model-based Transfer learning. Ex1 : deep NN

Industrial Image classification

Automatic tire wear detection, IdF AI Challenge, 2019. Data base :

1000 tire images with various tire views, di�erent lighting conditions, with and

without wear indicator.

500 images for learning/ 500 images for a blind evaluation.

Two following questions were addressed :

1/ detection and localization in an image of a "new generation" wear indicator

2/ Estimation of the wear level

Development based on Transfer learning

Poor performances obtained with trained model using only the tire data base (20%).

A source pre-trained model (RetinaNet, Yolo...) is used by the candidates (final perf 85%).

Figure – Pre-trained model, first frozen weights (credit learnopencv.com)
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Transfer learning & Domain adaptation Model-based TL

Model-based Transfer learning. Ex2 : decision trees

Fall detection. Strong benefits for transfering knowledge from Source to Target :

Segev et al. 2017.

SER : Structure Expansion and Reduction

• Idea : train on source domain, extend on target

domain the actives nodes, then cut the inactives

edges.

SER has to be adapted to take into account class

imbalance (few falls) with conditional reduction

[Minvielle et al., 2019]

• Idea : preserve nodes form minority class
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Transfer learning & Domain adaptation Feature-based TL

Transfer learning

Model-based

Transfer learning

Feature-based

Transfer learning

Instance-based
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Transfer learning & Domain adaptation Feature-based TL

Feature-based TL.

Deep network to confuse source and target input feature data...

Domain Adversarial Neural Networks. [Ganin and Lempitsky, 2015].

Figure – credit [Ganin and Lempitsky, 2015].

DANN : A neural net architecture and an optimization process to solve both

1. Supervised Task based on Source data to learn the model using an iid sample

{(x1, y1), ..., (xn, yn)} ∼ (P(X ,Y))n
, ĥ = arg minh∈H

∑n
i=1

`(h(xi), yi)

2. Unsupervised Domain Adaptation using Source and Target inputs

to minimize a distance characterizing the domain divergence.
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Transfer learning & Domain adaptation Feature-based TL

Feature-based TL.

Domain Adversarial Neural Networks.

[Ganin and Lempitsky, 2015]

Source obs i : (xi , yi , di = 0)
Label obs i : (xi , di = 1)
Ly / Ld : label/ domain loss.

Optimization criteria :

E(θf ; θy , θd )

=
∑

i=1...N
di =0

Ly (Gy (Gf (xi ; θf ); θy ), yi)

−λ
∑

i=1...N
Ld (Gd (Gf (xi ; θf ); θd ), di)

The backpropagation optimisation procedure

aims to compute the parameters

(θf ; θy , θd ) such that

(θ̂f ; θ̂y ) = arg min
θf ,θy

E(θf ; θy , θ̂d )

(θ̂d ) = arg max
θd

E(θ̂f ; θ̂y , θd )

Stochastic updates with learning rate µ

θf ← θf − µ[
∂Li

y
∂θf
− λ

∂Li
d

∂θf
]

θy ← θy − µ
∂Li

y
∂θy

θd ← θd − µ
∂Li

d
∂θd
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Transfer learning & Domain adaptation Feature-based TL

Transfer learning

Model-based

Transfer learning

Feature-based

Transfer learning

Instance-based
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Transfer learning & Domain adaptation Feature-based TL

Instance-based TL.

The risk computed on the Target may be related to the risk on the Source domain.

R`T (h) = E
(x,y)∼T

`(h(x), y) =
∫

(x,y)∈X×Y
T (x, y) `(h(x), y)dxdy

=

∫
(x,y)∈X×Y

T (x,y)
S(x,y)

S(x, y)`(h(x), y)dxdy

=

= E
(x,y)∼S

[
w(x, y)`(h(x), y)

]
= E

(x,y)∼S

[TX (x)T (y/x)
SX (x)S(y/x)

`(h(x), y)
]

Rem : The support of TX is contained in the support of SX , S(x, y) > 0.
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Transfer learning & Domain adaptation Instance-based TL

Instance-based TL.

The covariate shi� assumption. The predictive dependency remains unchanged between Source

and Target while the marginal distributions change.

Covariate shi� assumption
{
S(Y/X) = T (Y/X)
TX(X) 6= SX(X)

R`T (h) = E
(x,y)∼T

`(h(x), y)

=

= E
(x,y)∼S

[TX (x)T (y/x)
SX (x)S(y/x)

]
`(h(x), y)

=

= E
(x,y)∼S

[ TX (x)
SX (x)

]
`(h(x), y)
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Transfer learning & Domain adaptation Mixing strategies

Mixing strategies (Feature-Instance based)

Unsupervised Multi-source domain adaptation for regression

Application : Non intrusive load monitoring. From the house consumption, estimation of the

consumption of an appliance over a period of time.

Figure – Water heater consumption estimation : input is the whole consumption (gray curve 2s sampling),

variable to predict is the whole Water Heater consumption, y ∈ R (green area)

Mathilde Mougeot Leveraging knowledge for ML design MIRES workshop 21 / 33



Transfer learning & Domain adaptation Theoretical setup

Theoretical setup for domain adaptation

BenDavid et al. introduced in 2006 theH-divergence for 01 loss function, in the se�ing of binary

classification (`01(h(x), y) = 1 if h(x) = y ; otherwise 0 )

I Given two domain distributions DX
S and DX

T over X, and a hypothesis classH,

theH-divergence between DX
S and DX

T for classification is defined by :

dH(DX
S ,DX

T ) = 2 sup
h∈H

∣∣∣∣∣ Pr
x∼DX

S

[h(x) = 1]− Pr
x∼DX

T

[h(x) = 1]

∣∣∣∣∣
I TheH-divergence relies on the capacity of the hypothesis classH to distinguish between

examples generated by DX
S from examples generated by DX

T .

Figure – Divergence/discrepancy illustration with linear classifiers. [Richard et al., 2021]
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Transfer learning & Domain adaptation Theoretical setup

Theoretical setup for domain adaptation

The discrepancy introduced by Ben David et al. 2007, Mansour et al. 2009 measures the

availability to discriminate between Source and Target input features distribution.

I Considering two labeling functions f , g and the symmetric loss ` over pairs of labels which

obeys the triangle inequality.

The expected loss over any marginal distributionQ is defined by :

LQ(f , g) = EQ(`(f (X), g(X)))

I Consider a hypothesis classH and

the marginal distributions S on source domain and T on target domain,

the discrepancy distance between these two is defined as :

discH,L(S, T) = sup
h,h′∈H

∣∣LS(h, h′)− LT (h, h′)
∣∣
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Transfer learning & Domain adaptation Theoretical setup

Domain adaptation bound

Mansour et al. 2009 established a bound for the Target risk using the discrepancy :

RT (h) ≤ RS(h, h∗S ) + discH,`(S, T) + λ

where

RQ(h) = EQ(`(h(X),Y)),

RQ(h, h′) = LQ(h, h′) = EQ(`(h(x), h′(x))), h, h′ ∈ H

h∗S = argminh∈H RS(h), h∗T = argminh∈H RT (h),

ideal hypothesis for Source and Target domain.

λ = RS(h∗T ) + LT (h∗S , h
∗
T )

Comments

I First term : source risk, can be minimized with source labels

I Second term : discrepancy between domains→ to minimize !

I Third term : risk of the ideal hypothesis on the source and target samples. Assumed to be

small and not controlled in unsupervised DA.
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Knowledge in ML ... towards Physical models

Leveraging Knowledge to design Machine Learning.

1. Introduction

The success of ML models

ML in industry

2. Transfer learning & Domain adaptation

Definition

Model-based TL

Feature-based TL

Instance-based TL

Mixing strategies

Theoretical setup

3. Knowledge in ML ... towards Physical models

Knowledge in ML

4. To conclude...From theory to practice !
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Knowledge in ML ... towards Physical models Knowledge in ML

Knowledge in ML modeling

Data augmentation and tailored knowledge...

Extra Prior knowledge can provide rich information not existing or hard to extract in limited

training data and helps improve the data e�iciency, the ability to generalize, and the plausibility

of resulting models.

• Data augmentation.

Easy for Image classification tasks (symmetry, rotation, texture transformations).

• Tailored knowledge [Features, architecture, function properties]

1. Feature engineering. xraw → x → fθ(x) ∼ y
Ex. Wavelet based sca�ering transform, Fourier transform.

Ex : sounds classification for Delphin challenge classification (frequential data).

2. Design of specialized NN architecture associated with a given predictive task. Symmetry

groups as rotation, homothety, translation may implement an intrinsic geometry of fθ
x → fθ(x) ∼ y
Ex : Convolutional NN [CNN] by craflty respecting invariance along the groups of

symmetries

3. Multi-Task Learning
Introduction of knowledge in the cost function, in the optimisation process. Ex : Physical

Informed Neural Network
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Knowledge in ML ... towards Physical models Knowledge in ML

Machine Learning models

. for physics

.

. Surrogate models

.
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Knowledge in ML ... towards Physical models Knowledge in ML

Surrogate models

The supervised data driven approach :

1. Data set provided by experimental design or sampling.

Dn = {(xi , yi), 1 ≤ i ≤ n, input xi ∈ X , outputyi ∈ Y}
2. The Model fθ : fθ(x)→ y

Parametric model : Gaussian Process....

Non Parametric models : NN, RF, GradBoost...

3. Calibration by optimisation given the data Dn

Example : `2 Loss function Ldata = 1

N
data

∑N
data

i=1
(fθ(xi)− yi))2

Surrogate/ Meta models approximate the input/output relation.

Several techniques have been developed such as :

I Reduced Order Models (ROM) which reduce the order of the model in an unsupervised

manner like Principal Component Analysis (PCA).

I Data fit models which create a fit between input and output models based on simulation

data as for example polynomial basis, radial basis function, Gaussian Process, stochastic

polynomial chaos expansion.

I Machine learning, Deep Neural Networks models which are known to need large data set.
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Knowledge in ML ... towards Physical models Knowledge in ML

ML surrogate model

Illustration with Deep Neural Network on a toy example.

Burger’s equation :input (x space , t time), output : speed of the fluid

given parameter : ν viscosity. Dirichlet boundary condition :
∂u
∂t +u ∂u

∂x −ν
∂2u
∂x2

=

0 ; u(0, x) = −sin(πx) ; u(t,−1) = u(t, 1) = 0

Neural network Surrogate model.

fθ trained with n = 100 supervised observations. NN architecture : 2-4 (x50)-1. Evaluation on a

Test data set, regular grid of points (256 (x) , 100 (t)). E(u, û) = ||u − û||2
2
/||u||2

2
on a grid (256 (x) , 100

(t))

Supervised points Surrogate model E(u, û) = 0.17

Error Pairwise Plot
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Knowledge in ML ... towards Physical models Knowledge in ML

ML Surrogate model

Illustration with Deep Neural Network on a toy example.

n = 1000 supervised observations.

Model fθ : neural network. NN architecture : 2-4 (x50)-1.

Evaluation on a Test data set, regular grid of points (256 (x) , 100 (t)).

Supervised points Surrogate model E(y, ŷ) = 0.02

Error Pairwise Plot
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Knowledge in ML ... towards Physical models Knowledge in ML

ML Surrogate model

Illustration with Deep Neural Network on a toy example.

Focus on the Pde errors/residuals computed for Burger model (le�/bo�om figure) :

Ndata = 1000, Ncolloc=0 , NN architecture : 2-4 (x50)-1. 50 000 epoch, Adam optimizer.

E(u, û) = ||u − û||2
2
/||u||2

2
on a grid (256 (x) , 100 (t))

PINNs model E(u, û) = 0.0163

Conclusions :
→The pde constraints are not respected...
→ The NN model mimics the input/output relation
but the underlaying physics is not caught.
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Knowledge in ML ... towards Physical models Knowledge in ML

ML Surrogate model

First conclusions :

I Especially, in a "small data regime", the vast majority of state-of-the-art machine learning

techniques are lacking robustness and fail to "model" the underlaying physics phenomena

(pde constraints not respected).

I The cost of data acquisition may be prohibitive.

Experimental design are proposed to chose the observations.

I We are inevitably faced with the challenge of drawings conclusions and making decision

under partial information.
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To conclude...From theory to practice !

An academic- industrial joint work

on Transfer Learning, Hybrid models, Generative models...

thanks to.

with

I Antoine de Mathelin, Towards reliable machine learning under domain shi� and costly labeling, with

applications to engineering design Michelin & IDAML, Centre Borelli

I Khoa Nguyen, Development and assessment of physically informed learning methods : enhancement of

multi-physical simulation in industrial contexts, CEA, Michelin & IDAML, Centre Borelli

I Fouad Oubari, Deep Generative design for Industrial Products Michelin & IDAML, Centre Borelli

I Michelin Team since 2018. R. Décatoire, F. Deheeger, T. Dairay, R. Meunier .

I Part of Borelli, ENS-Paris Saclay : Mounir Atiq, Ludovic Minvielle, Transfer learning for fall detection,

Tarket, Sergio Peignier, Transfer learning, Guillaume Richard, Transfer learning for Temporal data, EDF ,

Nicolas Vayatis, Director Centre Borelli, ENS-Paris-Saclay,

Thank you !
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To conclude...From theory to practice !

From Theory to Practice : The Adapt library

ML Feedbacks in Industry :

I labeled-data is o�en di�icult and

time-consuming to acquire

I Makes sense to re-use knowledge gained

from related but distinct datasets.

I Transfer learning : the model can be

pre-trained on data from a specific domain

and then adapted to meet needs of a given

task.

I Development of the Adapt library

(→ adapt) :

[de Mathelin et al., 2022],
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