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1. Context and background

Motivation

* PINNs (Raissi et al. (2019)) have gained much attention in physical modeling: ... @.,-.@_?-‘?-:"f—----;;t;;;ﬁ-t ------- :
o Uses a feedforward network as approximator ‘-0 Y Semain
o Integrates PDEs (strong form) as constraints in the loss function spalfemposl | oo Q C]
o Uses automatic differentiation to calculate the derivatives (at colocation points) -EG 3

@ @'
* Deep energy method (DEM) (Samaniego et al. (2019), Nguyen-Thanh et al. (2019)) @ -

€ = €paT TE€pDE

o Use the same principle of PINNs to solve the problems
o Employ weak form of the physical system in the loss function

 However, vanilla PINNs and DEM are capable of inferring the solution on only one
configuration (i.e. fixed IC/BCs, geometry, and other constraints).

Physics-informed neural operators Geometry-aware framework
o Physics-informed DeepOnet (Li et al. (2021)) o PhyGeoNet (Gao et al. (2021))
o Physics-informed Fourier Neural Operator o Physics-informed Point Net (Kashefi et al. (2022))
(Wang et al. (2021)) o Geometry-aware PINNs (Oldenburg et al. (2022))

— Inferring on new PDE parameters, or =)  Inferring on new geometries.
new ICs / BCs. ,



1. Context and background

* Objective: infer the solution on various geometries for structural mechanical
problems.

o An academic test case with reference solution produced by FEniCS.
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o A more realistic industrial case with reference solution produced by an in-house solver.

OO-0O 0O

* We propose novel geometry-aware framework for physics-informed models

L pysin(p;x) 1y

o Combing weak form of the physical system and shape encoding in the loss function.
‘ o Shape encoding: parametric encoding, PCA, VAE.
o Extension with spatial coordinates or images to represent the geometry for real-world application.

‘ Geometry-aware deep energy method (GADEM)



2. Solid mechanics: physical model

Problem: Find the displacement field w: @ = R? and a constraint field P: @ - M% such that:

Strong form

Constitutive law P =0pW(F) in Q
Equations of motion DivP+f, =0 in Q

(U =uy on Qp )
Boundary conditions

\PN = fz in QN )

o Very complex systems of PDEs.

o Hard to solve using classical PINNs as involving many high
order differentiations.

Weak form

Potential energy
(at minimum in the equilibrium state)

M(¢) = fQWdV— fﬂ fo. PpdV — ) fo. PpdA

where ¢ is a trial function and the displacement u fulfills
the boundary condition a priori.

o Using only first-order differentiations.
® Small computational cost and fast training time.
o Reduce dependencies on PDEs of the base function.



3. Geometry-aware deep energy method

(GADEM)
GADEM is based on the same principle of DEM, and:

o Encodes the geometric knowledge into the model.
o The potential energy of the systems over all geometries are minimized.
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tanh activation in this work. If available
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Desired output: The reference

4. Academic experimental design
Linear elasticity problem (small deformation):

o Input: The geometry depends on five parameters

l, d' llr P1,D2-
Configuration: The left side is clamped and the right
side is subjected to a traction P= (0,—0.1)N.
Homogeneous, isotropic beams with Young’s
modulus E = 1000N /m?, and Poisson’s ratio v =

Element Method (FEM)

solution with FEniCS by Finite w l a8

Nb. geometries Shape Interval of parameters [, d, p1, p2, p

Train 50 p1sin(pax) 4,12],11, 3], (1, 2], |0.5,1.5,]0.25,0.5

50 p1xP? 4,12],[1, 3], [0.1,1], 1, 1.5],0.25,0.5
Test 1 10 prsin(pax) 4,12],11, 3], [1, 2],[0.5,1.5],[0.25,0.5

10 ppxP? 4,12, 1, 3], [0.1,1], [1, 1.5], [0.25, 0.5
Test 2 10 p1sin(paz) [12,14], [3,4], [2,2.5], [0.25, 0.5], [0.5, 0.6]

10 prP? [2,4],[0.5,1],[0.05,0.1], [1.5, 2], [0.1,0.25]
Test 3 20 p1sin(pazx) + p1zP? 4,121, [1.3], [1.2], [0.5, 1.5{,10:25, 0.5]
Test 4 20 p1 exp(pax) [4,12],]1, 3], [1, 2], 0.5, 1.5],[0.25,0.5]

Table 1: Configuration for the geometries in training and testing sets.

(a) Training set |

pysin(p,x) + p,x¥

(a) Testing set 3

l
(b) Training set 2

(b) Testing set 4



4. Academic experimental design
lllustration of GADEM prediction:
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7



4. Geometric encoding for GADEM: comparlson

Performance on training set: N o
0.200 ; ‘ ﬂ ” n 'l | "
0176 | ‘ | |
0.150 o T 1 (9 Tsning s 2

o Parametric encoding: geometric parameters (if
available).

o PCA-Coord: spatial coordinates to represent the
geometries and PCA to encode the geometries.

o VAE-Coord: spatial coordinates to represent the

Relative L2 error
o
—
o
o

0.050 geometries and VAE to encode the geometries.
0,095 o PCA-Image: images to represent the geometries and
' — - PCA to encode the geometries.

VAE-Image o VAE-Image: images to represent the geometries and
VAE to encode the geometries.

Size of latent vector is fixed k = 5.
' o GADEM approaches provides good prediction for the solutions (errors vary from 1%-20%)
o The approaches using spatial coordinates performs better than the approaches using
images. 8

Param PCA-Coord VAE-Coord PCA-Image
Error of the prediction for all geometries in the training set



4. Geometric encoding for GADEM: comparison

Performance on testing set
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-

PCA-Coord VAE-Coord PCA-Image VAE-Image

o The approaches using

spatial coordinates perform
better than the approaches
using images.

On the same shapes of
geometries as training (test
1 and test 2), VAE-Coord
provides better prediction
than PCA-Coord.

On new shapes of
geometries (test 3 and test
4), PCA-Coord provides
better prediction than VAE-
Coord.



5. Toy industrial use case
Tire loading simulation (large deformation with contact)

o We consider the tires (made of rubber, incompressible
material) loading simulation, which follow the Saint-

Venant Kirchhoff hyperelastic model.

o The problem involves contact constraints, which results

additional inequalities.

Neumann boundary: P.N =0

B

VR

{ irichlet boundary Same configuration." ~
E ‘ u = (0,-0.01)n } — .
T 1 on different geometries _

i, T AP

| |

Potential contact boundary

Before loading After loading

o As we do not dispose of the geometric
parameters which control the shape of tires,
we consider the following approaches:

= PCA-Coord, VAE-Coord
= PCA-Image, VAE Image

Size of latent vector is fixed k = 5.

10



lllustration of GADEM prediction:

Reference
solution
(in-house
solver)

GADEM
prediction
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5. Tire loading simulation
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5. Tire loading simulation

Geometric encoding comparison:

' 0.055
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0.02 — 0.020

PCA-Coord VAE-Coord PCA-Image VAE-Image PCA-Coord VAE-Coord PCA-Image VAE-Image

Error of the prediction in the training set Error of the prediction in the testing set

o GADEM approaches provide good predictions for the displacements (errors vary from 1-5%)

o VAE-Coord outperforms the others.
o The approaches using spatial coordinates perform better than the approaches using images.



Accuracy enhancement with FBOAL

5. Tire loading simulation

o We apply FBOAL to infer the position of collocation points based

on the potential energy.

o After each 100k epochs, we add and remove 1% of training points.
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# o FBOAL adds more points near the contact zones.
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5. Tire loading simulation

Accuracy enhancement with FBOAL
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# o The error is significantly reduced with FBOAL, especially at the contact zone.
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5. Conclusion and perspectives

o GADEM: a geometry-aware framework for deep energy method.

o GADEM is capable of inferring the solution on various geometries, even on new geometries
that are not included in the training.

o Using spatial coordinates to represent the geometries provides better accuracy than using
images.

o PCA and VAE encoding can provides same performance as parametric encoding.

o FBOAL helps to reduce significantly the prediction errors.

Perspectives:
o Apply GADEM with different IC/BCs.
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