

Geometry-aware framework for deep energy method: an application to structural mechanics with hyperelastic materials

Thi Nguyen Khoa Nguyen^{1,2,3}

with Thibault Dairay^{1,2}, Raphaël Meunier², Christophe Millet^{1,3}, Mathilde Mougeot^{1,4}

¹ Université Paris-Saclay, Centre Borelli, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France

² Michelin, Centre de recherche Ladoux, 63118 Cébazat, France

³ CEA, DAM, DIF, 91297 Arpajon, France

⁴ ENSIIE, 91190 Évry-Courcouronnes, France

1. Context and background

Motivation

• PINNs (Raissi et al. (2019)) have gained much attention in physical modeling:

- o Uses a feedforward network as approximator
- Integrates PDEs (strong form) as constraints in the loss function
- Uses automatic differentiation to calculate the derivatives (at colocation points)
- Deep energy method (DEM) (Samaniego et al. (2019), Nguyen-Thanh et al. (2019))
 - Use the same principle of PINNs to solve the problems
 - Employ weak form of the physical system in the loss function
- However, vanilla PINNs and DEM are capable of inferring the solution on only one configuration (i.e. fixed IC/BCs, geometry, and other constraints).

Physics-informed neural operators

- Physics-informed DeepOnet (Li et al. (2021))
- Physics-informed Fourier Neural Operator (Wang et al. (2021))

Inferring on new PDE parameters, or new ICs / BCs.

Geometry-aware framework

- PhyGeoNet (Gao et al. (2021))
- Physics-informed Point Net (Kashefi et al. (2022))
- Geometry-aware PINNs (Oldenburg et al. (2022))

Inferring on new geometries.

1. Context and background

- Objective: infer the solution on various geometries for structural mechanical problems.
 - An academic test case with reference solution produced by FEniCS.

• A more realistic industrial case with reference solution produced by an in-house solver.

- We propose novel geometry-aware framework for physics-informed models
 - Combing weak form of the physical system and shape encoding in the loss function.
 - Shape encoding: parametric encoding, PCA, VAE.
 - Extension with spatial coordinates or images to represent the geometry for real-world application.

2. Solid mechanics: physical model

Problem: Find the displacement field $u: \Omega \to R^d$ and a constraint field $P: \Omega \to M^d$ such that:

	Strong form			
Constitutive law	$\mathbf{P} = \partial_F W(F)$	in	Ω	
Equations of motion	Div $\mathbf{P} + \mathbf{f_0} = 0$	in	Ω	
Boundary conditions	$u = u_d$	on	Ω_{D}	
	$PN = f_2$	in	Ω _N	

- Very complex systems of PDEs.
- Hard to solve using classical PINNs as involving many high order differentiations.

Weak form

Potential energy

(at minimum in the equilibrium state)

$$\Pi(\boldsymbol{\phi}) = \int_{\boldsymbol{\Omega}} W dV - \int_{\boldsymbol{\Omega}} \boldsymbol{f}_{0} \cdot \boldsymbol{\phi} dV - \int_{\boldsymbol{\Omega}_{N}} \boldsymbol{f}_{2} \cdot \boldsymbol{\phi} dA$$

where ϕ is a trial function and the displacement u fulfills the boundary condition *a priori*.

- Using only first-order differentiations.
- Small computational cost and fast training time.
- Reduce dependencies on PDEs of the base function.

3. Geometry-aware deep energy method (GADEM)

GADEM is based on the same principle of DEM, and:

- Encodes the geometric knowledge into the model.
- The potential energy of the systems over all geometries are minimized.

4. Academic experimental design

Linear elasticity problem (small deformation):

- Input: The geometry depends on five parameters l, d, l_1, p_1, p_2 .
- Configuration: The left side is clamped and the right side is subjected to a traction $\vec{P} = (0, -0.1)N$. Homogeneous, isotropic beams with Young's modulus $E = 1000 N/m^2$, and Poisson's ratio $\nu =$ 0.3.
- **Desired output:** The reference 0 solution with FEniCS by Finite Element Method (FEM)

 $p_1e^{xp_1}$

	Nb. geometries	Shape	Interval of parameters l, d, p_1, p_2, p	$p_1 \sin(p_2 x) + p_1 x^{p_2}$	I.
Train	50	$p_1 sin(p_2 x)$	[4, 12], [1, 3], [1, 2], [0.5, 1.5], [0.25, 0.5]		
	50	$p_1 x^{p_2}$	[4, 12], [1, 3], [0.1, 1], [1, 1.5], [0.25, 0.5]		
Test 1	10	$p_1 sin(p_2 x)$	[4, 12], [1, 3], [1, 2], [0.5, 1.5], [0.25, 0.5]		
	10	$p_1 x^{p_2}$	[4, 12], [1, 3], [0.1, 1], [1, 1.5], [0.25, 0.5]		15
Test 2	10	$p_1 sin(p_2 x)$	[12, 14], [3, 4], [2, 2.5], [0.25, 0.5], [0.5, 0.6]		" +
	10	$p_1 x^{p_2}$	[2, 4], [0.5, 1], [0.05, 0.1], [1.5, 2], [0.1, 0.25]		1
Test 3	20	$p_1 sin(p_2 x) + p_1 x^{p_2}$	[4, 12], [1, 3], [1, 2], [0.5, 1.5], [0.25, 0.5]		
Test 4	20	$p_1 \exp(p_2 x)$	[4, 12], [1, 3], [1, 2], [0.5, 1.5], [0.25, 0.5]	1	L
Table 1: Configuration for the geometries in training and testing sets.			(a) Testing set 3	(b) Testing set 4	

Table 1: Configuration for the geometries in training and testing sets.

(a) Testing set 3

4. Academic experimental design

Illustration of GADEM prediction:

4. Geometric encoding for GADEM: comparison

Performance on training set:

Error of the prediction for all geometries in the training set

- **Parametric encoding**: geometric parameters (if available).
- **PCA-Coord**: spatial coordinates to represent the geometries and PCA to encode the geometries.
- VAE-Coord: spatial coordinates to represent the geometries and VAE to encode the geometries.
- PCA-Image: images to represent the geometries and PCA to encode the geometries.
- VAE-Image: images to represent the geometries and VAE to encode the geometries.

Size of latent vector is fixed k = 5.

GADEM approaches provides good prediction for the solutions (errors vary from 1%-20%)
The approaches using spatial coordinates performs better than the approaches using images.

4. Geometric encoding for GADEM: comparison

Performance on testing set

- The approaches using spatial coordinates perform better than the approaches using images.
- On the same shapes of geometries as training (test 1 and test 2), VAE-Coord provides better prediction than PCA-Coord.
- On new shapes of geometries (test 3 and test 4), PCA-Coord provides better prediction than VAE-Coord.

5. Toy industrial use case

Tire loading simulation (large deformation with contact)

- We consider the tires (made of rubber, incompressible material) loading simulation, which follow the Saint-Venant Kirchhoff hyperelastic model.
- The problem involves contact constraints, which results additional inequalities.

Before loading

After loading

- As we do not dispose of the geometric parameters which control the shape of tires, we consider the following approaches:
 - PCA-Coord, VAE-Coord
 - PCA-Image, VAE Image

Size of latent vector is fixed k = 5.

Illustration of GADEM prediction:

11

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

Geometric encoding comparison:

Error of the prediction in the training set

Error of the prediction in the testing set

- GADEM approaches provide good predictions for the displacements (errors vary from 1-5%)
- VAE-Coord outperforms the others.
- The approaches using spatial coordinates perform better than the approaches using images.

Accuracy enhancement with FBOAL

- We apply FBOAL to infer the position of collocation points based on the potential energy.
- $\,\circ\,$ After each 100k epochs, we add and remove 1% of training points.

Accuracy enhancement with FBOAL

• The error is significantly reduced with FBOAL, especially at the contact zone.

5. Conclusion and perspectives

- **GADEM:** a geometry-aware framework for deep energy method.
- GADEM is capable of inferring the solution on various geometries, even on new geometries that are not included in the training.
- Using spatial coordinates to represent the geometries provides better accuracy than using images.
- PCA and VAE encoding can provides same performance as parametric encoding.
- FBOAL helps to reduce significantly the prediction errors.

Perspectives:

 $\,\circ\,$ Apply GADEM with different IC/BCs.

Related work:

- Nguyen, T.N.K., Dairay, T., Meunier, R., Millet, C. and Mougeot, M., 2023. Fixed-budget online adaptive learning for physics-informed neural networks. Towards parameterized problem inference. *International Conference of Computational Science*.
- Nguyen, T.N.K., Dairay, T., Meunier, R. and Mougeot, M., 2022. Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: An application to rubber calendering process. *Engineering Applications of Artificial Intelligence*, *114*, p.105176.