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Motivation
• PINNs (Raissi et al. (2019)) have gained much attention in physical modeling:

• Deep energy method (DEM) (Samaniego et al. (2019), Nguyen-Thanh et al.(2019))

• However, vanilla PINNs and DEM are capable of inferring the solution on only one 
configuration (i.e. fixed IC/BCs, geometry, and other constraints).

o Uses a feedforward network as approximator
o Integrates PDEs (strong form) as constraints in the loss function 
o Uses automatic differentiation to calculate the derivatives (at colocation points)

1. Context and background

o Use the same principle of PINNs to solve the problems
o Employ weak form of the physical system in the loss function

Physics-informed neural operators Geometry-aware framework
o Physics-informed DeepOnet (Li et al. (2021))
o Physics-informed Fourier Neural Operator 

(Wang et al. (2021))

o PhyGeoNet (Gao et al. (2021))
o Physics-informed Point Net (Kashefi et al. (2022))
o Geometry-aware PINNs (Oldenburg et al. (2022))

Inferring on new PDE parameters, or 
new ICs / BCs.

Inferring on new geometries.
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• Objective: infer the solution on various geometries for structural mechanical 
problems. 

• We propose novel geometry-aware framework for physics-informed models
o Combing weak form of the physical system and shape encoding in the loss function.
o Shape encoding: parametric encoding, PCA, VAE.
o Extension with spatial coordinates or images to represent the geometry for real-world application.

o An academic test case with reference solution produced by FEniCS.

o A more realistic industrial case with reference solution produced by an in-house solver.

1. Context and background

Geometry-aware deep energy method (GADEM)
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2. Solid mechanics: physical model

Strong form

o Very complex systems of PDEs.
o Hard to solve using classical PINNs as involving many high 

order differentiations. 

Potential energy
(at minimum in the equilibrium state)

o Using only first-order differentiations. 

Weak form

𝐏 = 𝜕𝑭𝑊 𝑭 in             𝛀

Div 𝐏 + 𝐟𝟎 = 𝟎 in             𝛀

𝒖 = 𝒖𝒅 on             𝛀𝐃

𝐏𝐍 = 𝐟𝟐 in             𝛀𝐍

Constitutive law

Equations of motion

Boundary conditions

Π 𝝓 = න 𝑊𝑑𝑉
𝛀

− න 𝒇𝟎. 𝝓𝑑𝑉
𝛀

− න 𝒇𝟐. 𝝓𝑑𝐴
𝛀𝐍

Problem: Find the displacement field 𝒖: 𝛀 → 𝑹𝒅 and a constraint field 𝐏: 𝛀 → 𝑴𝒅 such that: 

where 𝝓 is a trial function and the displacement 𝒖 fulfills 
the boundary condition a priori.  

o Reduce dependencies on PDEs of the base function.
Small computational cost and fast training time.
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3. Geometry-aware deep energy method 
(GADEM)

GADEM is based on the same principle of DEM, and:
o Encodes the geometric knowledge into the model.
o The potential energy of the systems over all geometries are minimized. 

Learning 
geometries

Desired 
output

Feedforward networks (*)

(*) 5 layers, 100 neurons per layer, 
tanh activation in this work.
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o Input: The geometry depends on five parameters 
𝑙, 𝑑, 𝑙ଵ, 𝑝ଵ, 𝑝ଶ. 

o Configuration: The left side is clamped and the right 
side is subjected to a traction 𝑃 = 0, −0.1 𝑁. 
Homogeneous, isotropic beams with Young’s 
modulus 𝐸 = 1000𝑁/𝑚ଶ, and Poisson’s ratio 𝜈 =
0.3.

4. Academic experimental design
Linear elasticity problem (small deformation):

o Desired output: The reference 
solution with FEniCS by Finite 
Element Method (FEM)

6



Training set Testing set 1 Testing set 2 Testing set 3 Testing set 4

Reference 
solution 
(FEniCS)

GADEM
prediction

4. Academic experimental design
Illustration of GADEM prediction: 
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o GADEM approaches provides good prediction for the solutions (errors vary from 1%-20%)
o The approaches using spatial coordinates performs better than the approaches using 

images. 

4. Geometric encoding for GADEM: comparison

Error of the prediction for all geometries in the training set 

o Parametric encoding: geometric parameters (if 
available).

o PCA-Coord: spatial coordinates to represent the 
geometries and PCA to encode the geometries.

o VAE-Coord: spatial coordinates to represent the 
geometries and VAE to encode the geometries.

o PCA-Image: images to represent the geometries and 
PCA to encode the geometries.

o VAE-Image: images to represent the geometries and 
VAE to encode the geometries.

Performance on training set:

Size of latent vector is fixed .
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Performance on testing set
Test 2Test 1

Test 3 Test 4

o The approaches using 
spatial coordinates perform 
better than the approaches 
using images.

o On the same shapes of 
geometries as training (test 
1 and test 2), VAE-Coord 
provides better prediction 
than PCA-Coord. 

o On new shapes of 
geometries (test 3 and test 
4), PCA-Coord provides 
better prediction than VAE-
Coord. 

4. Geometric encoding for GADEM: comparison

9



Tire loading simulation (large deformation with contact)
5. Toy industrial use case

o We consider the tires (made of rubber, incompressible 
material) loading simulation, which follow the Saint-
Venant Kirchhoff hyperelastic model.

o The problem involves contact constraints, which results 
additional inequalities. 

o As we do not dispose of the geometric 
parameters which control the shape of tires, 
we consider the following approaches:

 PCA-Coord, VAE-Coord
 PCA-Image, VAE Image

Size of latent vector is fixed .
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5. Tire loading simulation

Reference 
solution
(in-house 
solver)

GADEM
prediction

Training set Testing set Testing set 

Illustration of GADEM prediction: 
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5. Tire loading simulation
Geometric encoding comparison: 

Error of the prediction in the training set Error of the prediction in the testing set 

o GADEM approaches provide good predictions for the displacements (errors vary from 1-5%)
o VAE-Coord outperforms the others.
o The approaches using spatial coordinates perform better than the approaches using images. 12
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5. Tire loading simulation
Accuracy enhancement with FBOAL

Density of collocation points for different tires

o We apply FBOAL to infer the position of collocation points based 
on the potential energy.

o After each 100k epochs, we add and remove 1% of training points.  

o FBOAL adds more points near the contact zones. 
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5. Tire loading simulation
Accuracy enhancement with FBOAL

Error 
without 
FBOAL

Error with 
FBOAL

o The error is significantly reduced with FBOAL, especially at the contact zone. 



5. Conclusion and perspectives

Perspectives:

o GADEM: a geometry-aware framework for deep energy method. 
o GADEM is capable of inferring the solution on various geometries, even on new geometries 

that are not included in the training.
o Using spatial coordinates to represent the geometries provides better accuracy than using 

images.
o PCA and VAE encoding can provides same performance as parametric encoding. 
o FBOAL helps to reduce significantly the prediction errors.

o Apply GADEM with different IC/BCs.
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