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Helps professionals improve sportsmen performance and reduce the risk of

injuries.

Expensive, intrusive and time consuming system.

Confined to laboratory experiments.

Figure – Marker-based activity analysis Figure – Marker-less activity analysis
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Objective :

Computer vision method allowing the study of human activities and interaction
with its physical environment.

Estimation of 3D kinematics using monocular vision.

Application of the method on Table-Tennis.
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Figure – French table tennis championships 2024.

Creating an e�cient and robust model of the ball’s trajectory is essential to
understand the e↵ects applied on the ball.

Studying the 3D kinemtaics of small objects presents a significant challenge in
terms of 3D modeling.

To achieve this, we develop a Physics-Informed Neural Networks (PINNs) to
predict 3D ball trajectories and infer non-observable kinematics parameters.
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Newton’s second law

ms̈ = m
d ṡ

dt
= FG + FD + FL (1)

given the ball position s, here s̈ is the acceleration and ṡ is the ball velocity V , and m
is the mass of the ball. The gravitational force FG , FD is the drag force, FL is the lift
force.

FD = kFDk = �
1

2
CD⇢AV

2 FL = kFLk =
1

2
CL(t)⇢AV

2

Figure – Schematic diagram showing
forces applied on a ball. V the ball
velocity and ! represent the rotation
velocity.

Figure – Impact of Magnus e↵ect on
ball flight.
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Input Video (stereo) 3D Training Data
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Figure – Schematic diagram of the framework used in this work.
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PINNs [2] are comprised of three key components :

Feed-forward network : aims to predict the position ŝ(x , y , z) at any t.

Physics Constraints, the derivatives of ŝ(x , y , z) with respect to the collocation
points {tiphy} are calculated using automatic di↵erentiation(AD)[2].

Residual Functions

fx = �ẍ � k ⇥ V

(
(CDẋ)�

⇣CL

!
(!y ż � !z ẏ)

⌘)
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Optimization mechanism, to minimize the residual functions over the domain of
interest, while simultaneously satisfying the governing ODEs and any available
data.

Optimization Mechanism

(✓⇤,�⇤) = argmin
✓,�

(�phyLf + (1� �phy )Ls) (3)

here,✓ = {weights, biases}, � = {CD ,!x ,!y ,!z}, Ls is the loss with respect to
the data, Lf is the loss with respect to the physic constraints, and �phy 2 [0, 1] is
the relative weight of the physics loss [3].Loss functions, are calculated using
mean squared error [5].

Ls = MSEs =
1

Nd

NdX

i=1

���s
⇣
tis

⌘
� ŝ i

���
2

Lf = MSEf =
1

Nc

NpX

i=1

kf (tiphy )k
2

(4)

where
�
tis , s

i
 Nd
i=1

, denote the training data and {tiphy}
Np
i=1 are the physic

collocation points.
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Initial setting related to the rotation vector is used to simulate non-planar
trajectories.

Several stroke classes are simulated by solving the ODEs using Runge-Kutta
method [4].

100 trajectories for each stroke type : Topspin, Push and Counter Attack.

Ball
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Figure – (a)Illustration of the method for setting the initial conditions related to the vectors V0

and !0. (b) Example of 3 Topspin simulated trajectories.
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(a) (b)

Figure – (a) Violin plots for relative error values of PINNs 3D position predictions. (b) Violin plots
for realtive error values of PINNs !0 estimations.

Table – Comparison of methods in term of the average estimated relative error of the rotation and
translation speed for all the strokes classes.

Method Rotation Speed E!0 Translation Speed EV0

Calandre et al.[1] 0.41 3.04
PINNS 0.07 0.00
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Dataset : 33 Video sequences include several strokes from Table-Tennis gameplay.

Annotated based on three stroke categories : Top Spin, Counter Attack, and Push

Figure – Frame from video sequences of Table-Tennis. Illustrate 3D reconstruction of ball using
stereo-vision.
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(a) Counter Attack

(b) Topspin (c) Push

Figure – Results of the PINNS prediction of a segment from the real trajectories dataset for
di↵erent stroke classes.
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Table – Average estimated relative error of the 3D position and translation speed for each of the
three stroke types.

Stroke Position Ep Translation Speed EV0

Topspin 0.003 0.064
Push 0.013 0.067

Counter 0.005 0.093

Table – Average estimated values of !0, V0 and Cd for each of the three stroke types.

(!0 in rps and V0 in m/s and Cd is dimensionless)
Stroke Rotation Speed !0 Translation Speed V0 Drag Coe�cient Cd

Topspin 52.38 14.18 0.38
Push -28.07 6.73 0.53

Counter Attack 24.78 19.96 0.40
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Linear Support Vector Machine (SVM) classification is applied on all the 33 real
sequences.

The estimated !0 and V0 are relevant features and can be used to classify the
type of a given stroke.

Figure – Classification of data points with respect to the !0 and V0 values.



19/21

Conclusion and Perspectives

19/21

Using small amount of simulated data points and the physics constraints we
show that our model is able to predict the 3D position and 3D kinematics of
both planar and non-planar trajectories.

PINNS improve the estimation of initial translation and rotation speed

comparing with other method.

The model perform the task and shows accurate prediction with the real dataset

of Table-tennis 3D trajectories obtained using stereovision.

Our future aim is to further explore the use of 3D data trajectories reconstructed
using a single camera (monovision)
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