
Neural representation for PDEs

A. Belières2, M. Duprez1, E. Franck12, F. Lecourtier1,
V. Lleras3, V. Michel-Dansac12, Y. Privat4

28 Mars 2024
Journée thématiques MIRES, Réseaux de neurones et applications

1Inria Nancy Grand Est, France
2IRMA, Strasbourg university, France
3Montpellier University, France
3Mines-Nancy, France

E. Franck 1/40

1/40

Outline

Introduction

”Classical” ML and numerical methods

Neural representation in ML and numerics

How improve PINNs

Conclusion

Inverse problem and optimal control

E. Franck 2/40

2/40

Numerical Methods and implicit neural representation

E. Franck 3/40

3/40

Parametric models

■ We consider a unknown function
y = f (x)

with x ∈ V ⊂ Rd and y ∈ W ⊂ Rp .

Objective

□ find fh ∈ H an approximation of f with H a functional space.

□ Difficulty: it is a infinite dimensional problem.

Solutions parametric models

□ We consider a function fθ composed of known elementary functions and n unknown
parameters θi

□ The problem becomes : find fθ ∈ Hn an approximation of f with Hn a finite
dimensional functional space.

□ It is equivalent to
Find θ, such that ∥ fθ − f ∥H≤ ϵ

■ Main Question: How determinate θ ?
■ Example in the following. We want approximate the temperature in a Room:

T (t, x), x ∈ Ω ∈ R3, t ∈ R+

E. Franck 4/40

4/40

ML and regression

ML regression approach

□ We have data and we use it to construct the parametric model which approach our
function T

■ We assume that we known: {(x1, t1,T1),(xN , tN ,TN)} such that

Ti = T (ti , xi) + ϵi

with ϵi a noise.

■ To approximate the temperature function we propose to approximate correctly our
data examples.

■ It is equivalent to solve:

minθ

N∑
i=1

d(Ti , fθ(ti , xi))

with d a distance like euclidian norm.

Questions in ML

□ Which parametric model ?

□ Generalization for input outside of the data set (overfitting) ?

□ Robustness to the noise ?

□ How collect, process the date ?

E. Franck 5/40

5/40

Models and garanties
■ We consider: y = f (x) with x = (x1,, xd) ∈ Rd

■ Models:

■ Linear model: d∑
i=1

θix
i

■ Polynomial model:

n∑
i=1

θiPi (x)

■ Kernel model:

N∑
i=1

θiK(x, xi)

with xi a data and K a symmetric kernel.

■ Polynomial regression of the
Runge function

■ Garanties: For d =∥ x − y ∥22 the minimization problem is convex and admit a unique
solution if you have sufficient number of data.

■ For nonlinear models compared to the inputs more you have data and parameters
more you will accurate.

Curse of dimensionality
The number of data needed to approximate well the function grows up exponentially with
the dimension d

■ application to other problem than physics/biology like signal processing, translation
etc.

E. Franck 6/40

6/40

Models and garanties
■ We consider: y = f (x) with x = (x1,, xd) ∈ Rd

■ Models:

■ Linear model: d∑
i=1

θix
i

■ Polynomial model:

n∑
i=1

θiPi (x)

■ Kernel model:

N∑
i=1

θiK(x, xi)

with xi a data and K a symmetric kernel.

■ Kernel regression of the Runge
function

■ Garanties: For d =∥ x − y ∥22 the minimization problem is convex and admit a unique
solution if you have sufficient number of data.

■ For nonlinear models compared to the inputs more you have data and parameters
more you will accurate.

Curse of dimensionality
The number of data needed to approximate well the function grows up exponentially with
the dimension d

■ application to other problem than physics/biology like signal processing, translation
etc.

E. Franck 6/40

6/40

Numerical methods

Principe of numerical methods

□ Same objective than ML: construct a parametric model approaching T .
□ no data but a strong constrain on the function: the equation

■ Equation for temperature evolution: Lt,xu = ∂tT −∆T = f (x)
T (t = 0, x) = T0(x)
T (x) = g on ∂Ω

■ Numerical method: choose a parametric model, transform the equation/constrain on
the function on a equation/constrain on the parameters.

Important: convergence
For numerical methods, we want that ∥ fθ − f ∥h→ 0, when , n → ∞ with n the number
of parameters (call degrees of freedom).

■ For the three next slides, i consider only a spatial problem like −∆T = f (x)

Parametric models

□ In all the classical numerical method we choose: fθ =
∑n

i=1 θiϕi (x)
□ How construct ϕi ?

E. Franck 7/40

7/40

Mesh based methods

Polynomial Lagrange interpolation
We consider a domain [a, b]. There exists a polynomial P of degree k such that, for any
f ∈ C0([a, b]),

|f (x)− P(x)| ≤ |b − a|k max
x∈[a,b]

|f k+1(x)|.

■ On small domains (|b − a| ≪ 1) or for large k,
this polynomial gives a very good approximation
of any continuous function.

■ Very high degrees k can generate oscillations
(like in ML).

■ To obtain good approximation: we introduce a
mesh and a cell-wise polynomial approximation

■ Possible since contrary to ML, the domain of inputs is always well-known.

First step: choose a parametric function
We define a mesh by splitting the geometry in small sub-intervals [xk , xk+1], and we
propose the following candidate to approximate the PDE solution T

T|[xk ,xk+1]
(t, x) =

k∑
j=1

θjkϕj (x).

This is a piecewise polynomial representation.
E. Franck 8/40

8/40

Classical numerical methods, encoder and decoder

Parametric model for all numerical methods;

fθ =
n∑

i=1

θiϕi (x)

■ Classical mesh based methods:
□ Finite element: Cp continuity between the cells (depend of the finite element) so

ϕi (x) piecewise polynomial.
□ DG: discontinuity between the cell so ϕi (x) = pj (x)χx∈Ωi

.
□ DG Treffz: same as DG but non-polynomial.
□ Finite difference: punctual value so ϕi (x) = δxi (x) with xi a mesh node.

■ Classical mesh free methods:
□ Spectral: we use Hilbert basis so ϕi (x) = sin(2πkix) for example (same with

Hermite, Laguerre, Legendre polynomiales).
□ Radial basis: we use radial basis so for example ϕi = ϕ(| x − xi) with ϕ a Gaussian

or 1
1+σ2x2

.

E. Franck 9/40

9/40

How determinate the degree of freedom

General method
The aim is to transform the PDE on T into a equation on θ (DOF).

■ We note Vθ = Span {fθ, such that , θ ∈ V ∈ Rn}
■ First approach: Galerkin

□ Rewrite the problem:

−∆T (x) = f (x),⇐⇒ minT∈H

∫
Ω

(
| ∇T (x) |2 −f (x)T (x)

)
dx

□ Galerkin projection:

minTθ∈Vθ

∫
Ω

(
| ∇Tθ(x) |2 −f (x)Tθ(x)

)
dx

■ The problem is quadratic in θ. The parameters which put the gradient at zero satisfy∫
Ω
(−∆Tθ(x)− f)ϕi (x) = 0, ∀i ∈ {1, ..., n}

■ Since we can compute exactly the derivative and numerically the integral we
precompute everything (after in general a integration by part) to obtain

Aθ = b

■ Second approach: Least square Galerkin projection

minθ∈V

∫
Ω
| −∆Tθ − f |2 dx

E. Franck 10/40

10/40

Time case

Space time methods
We use the parametric model:

fθ =
n∑

i=1

θiϕi (t, x)

■ The time equation have no equivalent minimization form so we use the Least square
Galerkin projection.

■ In practice we compute the gradient and obtain a large system to invert since n is large

Space methods
We use the parametric model:

fθ =
n∑

i=1

θi (t)ϕi (x)

■ We consider Least square Galerkin:

minθ(t)∈V

∫
Ω
| ∂tTθ(t)(x) −∆Tθ(t)(x) − f (t, x) |2 dx

E. Franck 11/40

11/40

Time case

Space time methods
We use the parametric model:

fθ =
n∑

i=1

θiϕi (t, x)

■ The time equation have no equivalent minimization form so we use the Least square
Galerkin projection.

■ In practice we compute the gradient and obtain a large system to invert since n is large

Space methods
We use the parametric model:

fθ =
n∑

i=1

θi (t)ϕi (x)

■ We discretize on time (here a Euler method):

minθ(tn+1)∈V

∫
Ω
| Tθ(tn+1)(x) − Tθ(tn)(x) −∆t(∆Tθ(t)(x) − f (t, x)) |2 dx

E. Franck 11/40

11/40

Time case

Space time methods
We use the parametric model:

fθ =
n∑

i=1

θiϕi (t, x)

■ The time equation have no equivalent minimization form so we use the Least square
Galerkin projection.

■ In practice we compute the gradient and obtain a large system to invert since n is large

Space methods
We use the parametric model:

fθ =
n∑

i=1

θi (t)ϕi (x)

■ it gives a succession of Galerkin (L2) projection on the spatial approximation space:

minθ(tn+1)∈V

∫
Ω
| (Φ(x), θ(tn+1))− (Φ(x), θ(tn))−∆t(∆Tθ(t)(x) − f (t, x)) |2 dx

■ This projection are smaller an faster than in the space time methods.
■

E. Franck 11/40

11/40

Time case

Space time methods
We use the parametric model:

fθ =
n∑

i=1

θiϕi (t, x)

■ The time equation have no equivalent minimization form so we use the Least square
Galerkin projection.

■ In practice we compute the gradient and obtain a large system to invert since n is large

Space methods
We use the parametric model:

fθ =
n∑

i=1

θi (t)ϕi (x)

■ Computing the gradient and ∇θJ(θ) = 0:(∫
Ω
Φ⊗ Φ

)
θ(tn+1) =

(∫
Ω
Φ⊗ Φ

)
θ(tn)−∆t

(∫
Ω
Φ(x)(∆Tθ(t)(x) − f (t, x))

)
■ it is the equivalent to the normal equation in infinite dimension for Least square

problem.

E. Franck 11/40

11/40

Garanties

Essential point
The space Vθ is a a vectorial space. So the projector is on subspace is unique (projection
on convexe subspace of Hilbert theorem). It allows to assure that the problem on
parameters admit also a unique solution.

Convergence
The previous property coupled the approximation theorem of polynomial or Hilbert basis
allows to assure that

∥ fθ − f ∥h→ 0, when , n → ∞

Curse of dimensionality
For mesh based approaches

∥ fθ − f ∥H≤ Chp

with h characteristic size of the cells and the number of cell N = O(1
hd

). For that we

need p polynomial by cell and direction so O(pd) parameters by cell. There is also similar
problem for mesh less methods.

E. Franck 12/40

12/40

Neural representation in ML and numerics

E. Franck 13/40

13/40

Deep ML, nonlinear model and manifold

Key point
All the parametric models introduced for ML or numerical methods are linear compared to
the parameters and gives finite dimension function vectorial space

Deep learning
The rupture associated to the deep learning is to use massively nonlinear compared to the
parameters which gives finite dimension function manifold

Projection on manifold
How project on manifold ? Not uniqueness ? The convex optimisation problem are
replaced by non-convex problem. So there is less guaranties on the results.

E. Franck 14/40

14/40

Nonlinear models
■ Nonlinear version of classical models: f is represented by the DoF αi , µi , ωi or Σi :

f (x ;α,µ, Σ) =
∑
i=1

αie
(x−µi)Σ

−1
i (x−µi), f (x ;α,ω) =

∑
i=1

αi sin(ωix)

■ Neural networks (NN).

Layer

A layer is a function Ll (xl) : Rdl → Rdl+1 given by

Ll (xl) = σ(Alxl + bl),

Al ∈ Rdl+1,dl , b ∈ Rdl+1 and σ() a nonlinear function applied component by component.

Neural network
A neural network is parametric function obtained by composition of layers:

fθ(x) = Ln ◦ ◦ L1(x)

with θ the trainable parameters composed of all the matrices Al ,l+1 and biases bl .

■ Go to nonlinear models: would allows to use less parameters and data.
■ Go to nonlinear models allows to use NN which are: accurate global model, low

frequency (better for generalization) and able to deal with large dimension.

E. Franck 15/40

15/40

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/40

16/40

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/40

16/40

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

■ The polynomial model tends to oscillate in the over parameterized regime.
Problematic for overfitting.

E. Franck 16/40

16/40

NN vs Polynomial

■ We compare over-parametrized NN and polynomial regression on the Runge function.

■ Regression: 120 data and approximately 800 parameters in each model.

E. Franck 16/40

16/40

NN vs Polynomial
■ We compare over-parametrized NN and polynomial regression on the Runge function.
■ Regression: 120 data and approximately 800 parameters in each model.

■ The ANN generates very smooth/low frequency approximations.
■ It is related to the spectral bias. The low frequencies are learned before the high

frequencies.
■ Seems very helpful to use it for global and high dimensional representation.

E. Franck 16/40

16/40

Space-time approach: PINNs I

Neural methods
The PINNs and Neural Galerkin approaches use exactly the same strategy than classical
numerical methods but project on manifold associated to nonlinear parametric models
compared to the parameters

Idea of PINNs
■ For u in some function space H, we wish to solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation for space-time approach: u(t, x) =
∑N

i=1 θiϕi (x , t)

■ Deep representation: u(t, x) = unn(x , t; θ) with unn a NN with trainable parameters θ.

Which projection
■ Galerkin projection is just valid for elliptic equations with energetic form.

■ More general: Least square Galerkin. We minimize the least square residue of the
restricted to the manifold associated by our chosen neural architecture.

E. Franck 17/40

17/40

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =

∫ T

0

∫
Ω
|R(t, x)|2dxdt

and

Jb(θ) =

∫ T

0

∫
∂Ω

∥unn(t, x ; θ)− g(x)∥22dxdt, Ji (θ) =

∫
Ω
∥unn(0, x ; θ)− u0(x)∥22dx .

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.

■ To complete the determination of the method, we need a way to compute the
integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 18/40

18/40

Space-time approach: PINNs II
■ We define the residual of the PDE:

R(t, x) = ∂tunn(t, x ; θ)−F(unn(t, x ; θ), ∂xunn(t, x ; θ), ∂xxunn(t, x ; θ))

■ To learn the parameters θ in unn(t, x ; θ), we minimize:

θ = argmin
θ

(
Jr (θ) + Jb(θ) + Ji (θ)

)
,

with

Jr (θ) =
N∑

n=1

N∑
i=1

|R(tn, xi)|2

with (tn, xi) sampled uniformly or through importance sampling, and

Jb(θ) =

Nb∑
n=1

Nb∑
i=1

|unn(tn, xi ;θ)− g(xi)|2, Ji (θ) =

Ni∑
i=1

|unn(0, xi ;θ)− u0(xi)|2.

■ If these residuals are all equal to zero, then unn(t, x ; θ) is a solution of the PDE.
■ To complete the determination of the method, we need a way to compute the

integrals. In practice we use Monte Carlo.

■ Important point: the derivatives are computed exactly using automatic differentiation
tools and back propagation. Valid for any decoder proposed.

E. Franck 18/40

18/40

PINNs for parametric PDEs
■ Advantages of PINNs: mesh-less approach, not too sensitive to the dimension.
■ Drawbacks of PINNs: they are often not competitive with classical methods.
■ Interesting possibility: use the strengths of PINNs to solve PDEs parameterized by

some µ.

■ The neural network becomes unn(t, x ,µ; θ).

New Optimization problem for PINNs

min
θ

Jr (θ) + ... , , with

Jr (θ) =

∫
Vµ

∫ T

0

∫
Ω

∥∥∂tunn − L
(
unn(t, x ,µ), ∂xunn(t, x ,µ), ∂xxunn(t, x ,µ)

)∥∥2
2
dxdt

with Vµ a subspace of the parameters µ.

■ Application to the Burgers equations with many viscosities [10−2, 10−4]:

■ Training for µ = 10−4: 2h. Training for the full viscosity subset: 2h.

E. Franck 19/40

19/40

Spatial approach: Neural Galerkin I

■ We solve the following PDE:

∂tu = F(u,∇u,∆u) = F (u).

■ Classical representation: u(t, x) =
∑N

i=1 θi (t)ϕi (x)

■ Deep representation: u(t, x) = unn(x ; θ(t)) with unn a neural network, with
parameters θ(t), taking x as input.

■ We use the same strategy as before: we begin with Lest square Galerkin Projection

minθ(t)∈Rn

∫
Ω
| ∂tunn(x ; θ(t))− F (unn(x ; θ(t))) |2 dx

■ We discretize in time

minθ(tn+1)∈Rn

∫
Ω
| unn(x ; θ(tn+1))− unn(x ; θ(tn))−∆tF (unn(x ; θ(t))) |2 dx

■ Here we solve a succession of nonlinear optimization problems (similar to linear case).
Since we initialize θ(tn+1) with θ(tn) and the weights evolve slowly these optimization
problems are fast to solve.

■ We speak about ”Discrete time PINN”.

E. Franck 20/40

20/40

Spatial approach: Neural Galerkin II
■ Variant: Neural galerkin. We linearize:

unn(x ; θ(tn+1)) ≈ unn(x ; θ(tn)) + (θtn+1 − θtn)∇θunn(x ; θ(tn))

So we have

minθ(tn+1)∈Rn

∫
Ω
| ∇θunn(x ; θ)θtn+1 −∇θunn(x ; θ)θtn −∆tF (unn(x ; θ(t))) |2 dx

■ Since the problem is quadratic in θ(tn+1) we can compute the solution which is given
by

M(θ(tn))θtn+1 = M(θ(tn))θtn −∆tf (θ(tn))

with

M(θ(t)) =

∫
Ω
∇θunn(x ; θ)⊗∇θunn(x ; θ)dx , f (, θ(t)) =

∫
Ω
∇θunn(x ; θ)F (unn(x ; θ))dx .

■ How to estimate M(θ(t)) and F (x , θ(t))?
■ Firstly: we need to differentiate the network with respect to θ and to x (in the

function F). This can easily be done with automatic differentiation.
■ Secondly: How to compute the integrals? Monte Carlo approach.

■ So, we use (same for f (θ(t))):

M(θ(t)) ≈
N∑
i=1

∇θunn(xi ; θ)⊗∇θunn(xi ; θ)

■ Like in the case of PINNs, we can apply this framework to parametric PDEs and larger
dimensions.

E. Franck 21/40

21/40

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 1: with a neural network (2200 DOF)

■ 5 minutes on CPU, MSE error around 0.0045.

E. Franck 22/40

22/40

Spatial approach: Neural Galerkin III

■ We solve the advection-diffusion equation ∂tρ+ a · ∇ρ = D∆ρ with a Gaussian
function as initial condition.

■ Case 2: with a Gaussian mixture (one Gaussian):

■ 5 sec on CPU. MSE around 1.0−6. Decoder perfect to represent this test case.

E. Franck 22/40

22/40

Convergence ?
■ I solve a 2D laplacian with 5 layers neural network and increase the size (685 weights

the smaller 26300 weights the larger).

■ Two learning rates:

■ The behavior of the error when we increase” the number of weights is complex”.

■ Sensitivity to the dimension. We use a network of 960 parameters for 1D/2D laplacian:

| u1D |L∞= 1.4e−4, | u2D |L∞= 3e−4

E. Franck 23/40

23/40

How improve PINNs

E. Franck 24/40

24/40

How go complex geometry ? mapping
■ Claim on PINNs: no mesh, so easy to go to complex geometries.
■ In practice: No so easy. We need to find how sample in the geometry.

■ First approach:
□ We are able to sample easily: quadrilateral, ellipse, cylinder etc
□ Using union/soustraction/intersection we can sample more complex domains.

■ Second approach: mapping
□ We consider a simple domain Ω0 and the target domain Ω
□ We assume that Ω = ϕ(Ω0)
□ We sample in Ω0 and apply ϕ to the points sampled.

E. Franck 25/40

25/40

How go complex geometry ? level-set
■ We define the model by a level set ϕ(x) which satisfy

ϕ(x) = 0, x ∈ ∂Ω, ϕ(x) < 0, x ∈ Ω, ϕ(x) > 0, x ∈ Rn/Ω,

■ Sample is easy in this case. Allow to impose in hard the BC (example for Dirichlet):

uθ(x) = unn,θ(x)ϕ(x) + g(x)

■ How construct ϕ? Classic level set: the signed distance function.

■ Left: exact distance function, right: smooth levelset.

E. Franck 26/40

26/40

How go complex geometry ?

Remark on levelset
The exact distance function is a C0 non C1 function. The derivates explode.
If we impose the BC using the Distance function the network must compensate the
singularity. For the BC we need regular level set.

■ How construct smooth signed distance function ?

□ First solution: Approximation theory (Exact imposition of boundary conditions
with distance functions in physics-informed deep neural networks).

□ ∆u can be singular at the boundary. Sampling at ϵ to the BC solve the problem.

■ Second solution: learn the signed distance function. How make that ? with a PINNs.

E. Franck 27/40

27/40

How go complex geometry ?

Signed Distance function
If we have a boundary domain Γ, the SDF is solution to the Eikonal equation: | ∇ϕ(x) |= 1, x ∈ [0, 1]d

ϕ(x) = 0, x ∈ Γ
(∇ϕ(x), n) = 0, x ∈ Γ

■ In practice we solve the Eikonal equation with PINNs
■ To obtain a smooth SDF (important to impose strongly the BC) we add a

penalization:
Lpenalize(θ) = λ | ∂xxϕ(x) |2

E. Franck 28/40

28/40

How go complex geometry ?

Signed Distance function
If we have a boundary domain Γ, the SDF is solution to the Eikonal equation: | ∇ϕ(x) |= 1, x ∈ [0, 1]d

ϕ(x) = 0, x ∈ Γ
(∇ϕ(x), n) = 0, x ∈ Γ

■ In practice we solve the Eikonal equation with PINNs
■ To obtain a smooth SDF (important to impose strongly the BC) we add a

penalization:
Lpenalize(θ) = λ | ∂xxϕ(x) |2

E. Franck 28/40

28/40

How go complex geometry ?

■ We can combine the options: mapping for the big domain. Level set for the holes.

E. Franck 29/40

29/40

NTK
■ How study the learning dynamic and discover training bias: NTK theory.
■ We call L(θ) the loss and fθ(x) the model. Continuous gradient descent:

dθ(t)

dt
= −∇θL(θ) = −

1

N

N∑
i=1

(∇θfθ(xi))(∇fθ l(fθ(xi), yi)

■ We multiply by ∇θfθ(x)

dfθ(t)(x)

dt
= −

1

N

N∑
i=1

K(x , xi)(∇fθ l(fθ(xi), yi)

with Kθ(t)(x , y) = (∇θfθ(x))
T (∇θfθ(y)).

Theorem
In the limit n the number of neurons tends to infinity We have:

□ Kθ(0)(x , y) deterministic at initialization, only determined by the model architecture

□ Kθ(t)(x , y) = Kθ(0)(x , y)

■ So we have:
fθ(t)(X) = (fθ(0)(X)− Y)e−ηK0(X ,X̄)

with X the evaluation points and X̄ the training points, η the learning rates.
■ Study K0(X , X̄) allows to understand the bias and fails of PINNs. For example some

trouble arrive when a loss decay really faster than another.

E. Franck 30/40

30/40

Spectral biais ans high frequencies

Spectral bias
Using NTK we can study the Spectral bias of MLP. the MLP learn firstly the low
frequencies and after the high frequencies (with difficulty)

■ Classic MLP with Sinus activation function (to help). We solve
−∆u = 128 sin(8πx) sin(8πy)

■ To solve this problem for PINNs we add Fourier features. We replace

NNθ(x), by NNθ(x , sin(2πk1x), ..., sin(2πknx))

with (k1,kn) trainable parameters.

E. Franck 31/40

31/40

Spectral biais ans high frequencies II

■ Fourier Network with Tanh activation function.

■ Other interesting subjects: adaptive sampling, loss balancing (to avoid bais) etc

E. Franck 32/40

32/40

Spectral biais ans high frequencies II

■ MutiScale network with Tanh activation function.

■ Other interesting subjects: adaptive sampling, loss balancing (to avoid bais) etc

E. Franck 32/40

32/40

Inverse problem and optimal control

E. Franck 33/40

33/40

Shape optimization I

■ Since the PINNs use a minimization framework it will be easy to solve without large
modification control optimal and inverse problems.

■ Example: shape optimization.

■ We introduce the energy associated to the Laplace problem for one domain:

E(Ω) = infu∈H1
0

1

2

(∫
Ω
| ∇u(x) |2 −f (x)u(x)dx

)
■ A classical problem is to find the domain Ω which minimize this energy with a

constrains volume :
Ω∗ = infΩ,|Ω|=V0

E(Ω)

Classical approach
Gradient method: we define a form gradient, we solve adjoint problem for that. Each
change of domain needs a remeshing step. It is costly and non trivial.

E. Franck 34/40

34/40

Shape optimization II

Pinns approach
■ We parametrize the PDE solution by a neural network uθ(x),

■ We consider a initial form Ω0,

■ We parametrize a mapping mϕ(x) such that Ω = mϕ(Ω0).

■ We solve:

minθ,ϕ
1

2

(∫
mϕ(Ω0)

| ∇uθ(x) |2 −f (x)uθ(x)dx

)

■ The integral is approximated with Monte Carlo approach. In practice we solve

minθ,ϕ
1

2

(∫
Ω0

| ∇(mϕ(uθ(x))) |2 −mϕ(f (x))mϕ(uθ(x))dx

)
■ There exist specific neural network called Sympnet which generate

Symplectomorphism.

Idea
■ In R2 the symplectomorphism preserve the volume. So we propose to use a SympNet

for mϕ.

E. Franck 35/40

35/40

Shape optimization III

■ PINNs on ellipse with hole.

,

■ Learn mapping between shape:

E. Franck 36/40

36/40

Shape optimization IV

■ Shape optimization with different sources

■ The initial shape is not a circle.

E. Franck 37/40

37/40

Conclusion

E. Franck 38/40

38/40

Conclusion

Short conclusion
■ The PINNs and the Neural Galerkin can be view as a classical space time and space

Galerkin approximation method where we project on a finite dimensional manifold
(PINNs) or in the tangent space to the manifold (Neural Galerkin).

■ We hope reduced significantly the number of parameters using manifolds. The neural
networks seems good candidate for than in large dimensional input case.

Scimba
All the experiments of the talk have been realized with our library Scimba

E. Franck 39/40

39/40

Main references

■ PINNs:
□ Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G.E. Karniadakis
□ An Expert’s Guide to Training Physics-informed Neural Networks, S. Wang, S. Sankaran, H. Wang, P.

Perdikaris
□ Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs,

S. Mishra, R. Molinaro
□ Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks, N.

Sukumar and Ankit Srivastava

■ Neural Galerkin:
□ Neural Galerkin Scheme with Active Learning for High-Dimensional Evolution Equations, J. Bruna, B.

Peherstorfer, E. Vanden-Eijnden
□ A Stable and Scalable Method for Solving Initial Value PDEs with Neural Networks, M. Finzi, A.

Potapczynski, M. Choptuik, A. Gordon Wilson
□ Efficient Discrete Physics-informed Neural Networks for Solving Evolutionary Partial Differential Equations,

E. Franck 40/40

40/40

	Introduction
	"Classical" ML and numerical methods
	Neural representation in ML and numerics
	How improve PINNs
	Conclusion
	Inverse problem and optimal control

