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Classical change-point problem

Gaussian data with change-point in mean:

Xi =

{
θ′ + εξi , i ≤ τ
θ′′ + εξi , i > τ

, ξi ∼ N (0, Id), i = 1, . . . , n
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Goal

Propose a statistic that will detect the presence of a change-point and

estimate it
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Extensions of classical model

Classical example: Gaussian independent data with changes in mean

Xt =
K∑

k=1

θk1τk≤t<τk+1 + ξt , t = 1, . . . ,T

Extensions:

• Dependency in the data: the noise ξt is a time series (ARIMA,

GARCH...); changes in mean

• Changes in mean and variance

• Changes in the parameter of X1, . . . ,XT (variance, parameter of

ARMA), mean is constant

• Non-Gaussian processes: Poisson process, random graph models
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Network Analysis

Network analysis is an important research field driven by applications in

social sciences, computer science, biology, and other fields.

Protein-Protein Interaction Network of Schizophrenia
Ganapathiraju et al, ’16, NPJ Schizophr. 4/29



Real-life networks

• The observed network is modeled by a random graph

• The network can evolve over time =⇒ dynamic network

• The real-life network is usually sparse : the graph contains few links

• Many of the real-life networks are only partially observed =⇒
missing links

• The parameters of a networks might abruptly change

Goals

Detect and localize abrupt changes in the parameter matrix of a sparse

dynamic network: change-point detection and estimation
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Graph Notations

A (simple, undirected graph) G = (E ,V ) consists of

• a set of vertices V = {1, . . . n}

• a set of edges E ⊂ {{i , j} : i , j ∈ V and i 6= j}
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A =


0 1 0 0 1

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0


The corresponding adjacency matrix is denoted A = (Aij) ∈ {0, 1}n×n,

where

Ai, = 1 ⇐⇒ (i , j) ∈ E
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Inhomogeneous random graph model

Observations: a sequence of random graphs represented by their

adjacency matrices A =
{
At , 1 ≤ t ≤ T

}

• Simple undirected graphs G t with n vertices

• Adjacency matrix At = (At
ij) ∈ {0, 1}n×n:

• The graph G t contains the edge (i , j) iff At
ij = 1

• At
ij are independent Bernoulli with the connection probability

Θt
ij = P(At

ij = 1), 1 ≤ j < i ≤ n.

• Connection probability matrix Θt = (Θt
ij) ∈ [0, 1]n×n is

symmetric with zero diagonal

• Sparsity parameter: ρn = maxt ‖Θt‖∞
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Modeling sparsity

Data: sequence of adjacency matrices A = {At , 1 ≤ t ≤ T} with i.i.d.

At
ij ∼ Bernoulli(Θt

ij)

Sparsity

• A sparse graph has a few links, connection probability tends to zero:

Θt
ij → 0 as n→∞ for some (or all) (i , j)

• Sparsity parameter: ρn = max
t
‖Θt‖∞ with the sparsity assumption

ρn → 0, n→∞

ρn % 1√
n

ρn . 1√
n
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Change-point problem

“Signal + Noise” model:

At = Θt + W t , 1 ≤ t ≤ T ,

where W t is a matrix of centered independent Bernoulli variables

The connection probability matrix Θt might abruptly change:

Θt =

{
Θ0, 1 ≤ t ≤ τ
Θ0 + ∆Θτ , τ + 1 ≤ t ≤ T

• The change-point τ is unknown

• Θ0, Θ0 + ∆Θτ are the connection probability matrices before and

after the change

• ∆Θτ is a symmetric jump matrix

• The amount of change is measured by ‖∆Θτ‖

Goals:

Test H0 : ∆Θτ = 0 ∀τ vs H1 : ∃τ : ‖∆Θτ‖ ≥ rn,T > 0 and estimate τ
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References

• Change-point localization

• Bhattacharjee, Banerjee & Michailidis ’20
Single CP estimation in SBM

• Wang, Yu & Rinaldo ’21
Multiple CP estimation, minimax rates

• Change-point detection

• Chen, Zhou & Lin ’20
test statistic based on operator norm of the jump matrix estimator;
asymptotic results

• Wang, Yu & Rinaldo ’21
results on detection of zero CP

• Two-sample testing

• Tang, Athreya, Sussman, Lyzinski & Priebe ’17
test statistic based on spectral embedding, bootstrap

• Ghoshdastidar, Gutzeit, Carpentier & von Luxburg ’20
two tests, minimax separation rates
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Problem Statement

We observe the sequence of adjacency matrices A = (A1, . . . ,AT ) such

that At = Θt + W T , where

Θt =

{
Θ0, 1 ≤ t ≤ τ
Θ0 + ∆Θτ , τ + 1 ≤ t ≤ T

Define the set of parameters of a ρn-sparse network:

Mn(nρn) =
{

Θ ∈ [0, 1]n×n : Θ = ΘT , diag(Θ) = 0, ‖Θ‖1,∞ ≤ nρn
}

Testing problem

H0 : Θ0 ∈Mn(ρn), ∆Θτ = 0 for all 1 ≤ τ < T

against

H1 : ∃1 ≤ τ < T : Θ0,Θ0 + ∆Θτ ∈Mn(ρn) and

q
( τ
T

)
‖∆Θτ‖2→2 ≥ Rn,T
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Change-point energy

• The change-point energy quantifies the detection difficulty:

E(τ) = q
( τ
T

)
‖∆Θτ‖2→2.

• q(t) =
√
t(1− t), t ∈ [0, 1] =⇒ impact of the CP location =⇒

it is easier to detect/estimate a CP in the middle rather that at the

border

• CP detection: testing whether the energy is zero or at least

Rn,T > 0:

H0 : E(τ) = 0 for all τ against H1 : E(τ) ≥ Rn,T for some τ

Goals

• Find a minimal detectable energy rate: Rn,T � ?

• Propose an optimal test/estimator that will detects a CP having

minimal detectable energy
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References: testing problem

Partial answers

• Optimal change point detection and localization in sparse

dynamic networks [Wang, Yu & Rinaldo ’21]

• Change-point localization and detection

• Detection procedure requires two independent samples

• Separation rate in terms of the Frobenius norm ‖∆Θ‖F
• Up to a log1+ε T factor in the localization rate

• Two-sample hypothesis testing for inhomogeneous random

graphs [Ghoshdastidar, Gutzeit, Carpentier & von Luxburg ’20]

• Two-sample testing problem: τ is known

• Separation rate for spectral and Frobenius norms and

corresponding tests

• Additional log n factor in the minimax detection rate
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CUSUM statistic

Classical Gaussian case

• Observations: Xi = θ + ∆θ1{i > τ}+ ξi , i = 1, . . . , n

• ξ ∼ Nd(0, Id) are i.i.d. d-dimensional Gaussian r.v.

• Means θ and θ + ∆θ before and after the change-point τ

CUSUM statistic

Compare means before and after each point 1 ≤ t ≤ T − 1:

ZT (t) =

√
t(T − t)

T

(1

t

t∑
i=1

Xi −
1

T − t

T∑
i=t+1

Xi

)

• Change-point estimator τ̂ = arg max
1≤t≤T−1

‖ZT (t)‖2

• Test of level α with critical set
{
‖ZT (t)‖2 > q1−α,T ,d

}
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Test statistic

We observe A = (A1, . . . ,AT ) such that At = Θt + W t , where at some

unknown time 1 ≤ τ < T there is a change in Θt :

Θt =

{
Θ0, 1 ≤ t ≤ τ
Θ0 + ∆Θτ , τ + 1 ≤ t ≤ T

Matrix CUSUM statistic

ZT (t) =

√
t(T − t)

T

(
1

t

t∑
s=1

As − 1

T − t

T∑
s=t+1

As

)
, t = 1, . . . ,T − 1.

• ZT (t): difference between the average number of connections

before and after time t

• Change in Θt at time τ =⇒ the value of ZT (t) is maximal in the

neighborhood of τ

• We detect a change in Θt at τ if ‖ZT (τ)‖ is sufficiently large
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Model for the Matrix CUSUM statistic

”Signal +noise” model for ZT

ZT (t) = −µT (t)∆Θτ + ξ(t), t = 1, . . . ,T − 1.

• The centered noise is

ξ(t) =

√
t(T − t)

T

(
1

t

t∑
s=1

W s − 1

T − t

T∑
s=t+1

W s

)

The true CP τ maximizes µT (t):

max
t=1,...,T−1

µT (t) = µT (τ)

=

√
τ(T − τ)

T
=
√
Tq
( τ
T

)
=⇒ CP energy: q(τ/T )‖∆Θτ‖
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What norm to choose?

The test is based on the norm of the Matrix CUSUM statistic:

ψn,T = 1
{

max
t∈T
‖ZT (t)‖ > Hα,n,T

}
=⇒ what norm to choose?

Intuitive idea

We have ZT (t) = −µT (t)∆Θτ + ξ(t), t = 1, . . . ,T − 1

• ‖∆Θτ‖ should be larger than ‖ξ(t)‖

• What about the Frobenius norm? Assume that Θt
ij ≈ ρn. Then

E[ξ2ij(t)] ≈ ρn and

E‖ξ(t)‖2F
n2

≈ ρn �
‖∆Θτ‖2F

n2
≈ ρ2n

=⇒ the Frobenius norm is not a suitable one

• The operator norm of ξ(t) can be controlled by the Matrix

Bernstein inequality

=⇒ choose ‖ZT (t)‖op as a test statistic
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Testing for a change at a given point τ

• Calculate the Matrix CUSUM statistic:

ZT (τ) =

√
τ(T − τ)

T

(
1

t

τ∑
s=1

As − 1

T − t

T∑
s=τ+1

As

)
, t = 1, . . . ,T − 1.

• Calculate the operator norm of ZT (τ): ‖ZT (τ)‖op := σmax(ZT (τ))

Testing for a change at a given point τ

• The test of significance level α :

detect the change if ‖ZT (τ)‖op > Hα,n

• Approximate quantile Hα,n is found from the matrix Bernstein

inequality:

Hα,n = c∗
√
nρn log(n/α)

where c∗ is an absolute constant
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Testing for a change at an unknown point

• Caculate the test statistics ‖ZT (t)‖op for t = 1, . . . ,T − 1.

• Take a grid T that approximates the set 1, . . . ,T

Testing at an unknown point

• The test of significance level α :

detect the change if max
t∈T
‖ZT (t)‖op > Hα,n,T

• Hα,n = c∗
√
nρn log(n log |T |/α)

Choice of the grid T :

• If T = {1, . . . ,T − 1} =⇒ logT factor in the minimal detectable signal

• Dyadic grid (Liu, Gao & Samworth ’21): take T = T L ∪ T R , where

T L =
{

2k , k = 0, . . . , blog2

(T
2

)
c
}
, T R =

{
T−2k , k = 0, . . . , blog2

(T
2

)
c
}
.

=⇒ only log logT factor in the minimal detectable signal
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Theoretical results

Let α ∈ (0, 1) be a given significance level and n ≥ 1/α.

Minimal detectable energy

q(τ/T )‖∆Θ‖op �
√

nρn
T

Testing at a given change-point τ :

• Assume that q(τ/T )‖∆Θ‖op ≥ C1

√
nρn
T

log(n/α).

Then our test detects a change with type I and II errors ≤ α

Testing at an unknown change -point:

• Assume that q(τ/T )‖∆Θ‖op ≥ C2

√
nρn
T

log((logT )n/α).

Then the test over the dyadic grid detects a change with type I and

II errors ≤ α
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Change-point estimation

Change-point estimator

The estimator of τ maximizes the operator norm of the Matrix CUSUM

test statistic:

τ̂n = arg max
1≤t≤T−1

‖ZT (t)‖op

Theoretical guarantees (Enikeeva and Klopp ’21):

• Let γ ∈ (0, 1). The estimated change-point τ̂ satisfies

P

 1

T
|τ̂ − τ | ≤ 3 c∗

(nρn
T

log(nT/γ)
)1/2

q(τ/T )‖∆Θ‖op

 ≥ 1− γ.

• Wang et al (2021): if

q(τ/T )‖∆Θ‖F .

√
nρn logT

T

then no consistent change-point estimator can exist.
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Numerical experiments

We applied three tests to the observations A1, . . . ,AT :

• test ψτn,T at the given change-point τ with the threshold

• test ψn,T over the dyadic grid T

• test ψfull
n,T (Y ) based on the maximum over {1, . . . ,T − 1}

Parameters

• Test are calibrated at the level α = 0.05, the threshold is

qα,n,T (t) =
1

3

log(n|T |/α)
√
Tq(t/T )

+
(1

9

log2(n|T |/α)
Tq2(t/T )

+ 2nρn log(n/α)
)1/2

, t ∈ T .

• Sparsity: ρn is set to n−1/2, nρn = n1/2

• Estimated sparsity: use the average link number

nρ̂n = maxt Q
({∑n

i=1 A
t
ij , j = 1, . . . , n

}
, 0.9

)
, where Q(Z , α) is

the α-level empirical quantile of the sample Z .

• “Energy-to-noise ratio”: ENR := E(τ)√
nρn/T

.
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Adaptation to the unknown sparsity level

Test powers depending on the ENR for n = 100, τ/T = 0.5

for known nρn and estimated sparsity

00.1583 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SBM with 2 communities and change

in connection probability between

communities, T = 100.

Sparsity: nρn = 7.94, nρ̂n = 12.91

00.1583 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SBM with 3 communities and change

in connection probability between

communities, T = 250.

Sparsity: nρn = 7.26, nρ̂n = 11.68

23/29



Transport for London (TfL) Open Data

London Bicycle Sharing Network data1

• Data collected since 2012

• ID of each bicycle

• ID and name of the origin and the destination trip stations

• journey (rental) starting and ending time and date

• ID and the duration of each trip

We focus on

• the period from June 24, 2012 to August 31, 2012

• London Olympics: July 27, 2012 – August 12, 2012

1https://api.tfl.gov.uk
24/29
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Transport for London (TfL) Open Data
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Transport for London (TfL) Open Data

• Dynamic network: a sequence of T = 69 daily observations

• Each observation: a graph with n = 595 vertices

corresponding to the bike rental stations

• Two vertices are connected if

• the minimal trip duration is not less than 3 minutes

• the number of trips is greater than a predefined threshold

• 0.9975-level empirical quantile of the distribution of the total

number of trips between every couple of stations

• Average number of links nρn = 43.2319 (over T = 69

observations)

• Sparsity ρn = 0.0727 � n−0.4
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Transport for London (TfL) Open Data

The values of the matrix CUSUM statistic during the whole period
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Matrix CUSUM test statistic, June 24 - August 31, 2012

Olympic Torch Arrival

End of the Olympics

The test detects the change at α = 0.05; the estimated CP corresponds

to the day of the arrival of the Olympic Torch (July, 22 2012).
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Transport for London (TfL) Open Data

Zoom to the period of 31 day from July 23 to August, 22

29-Jul 05-Aug 12-Aug 19-Aug

2012   

32
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40

42

Matrix CUSUM statistic, July 23 - August 22, 2012

End of the Olympics

The test detects the presence of a change. The CP estimator gives the

End of the Olympics day. =⇒ Use multiple testing methods for multiple

change-point localization
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Summary

• Minimax separation rate for the change-point energy

q(τ/T )‖∆Θτ‖2→2 �
√

nρn
T

• Sparsity: ρn = max
t
‖Θt‖∞

• Change points that are away from the end points may be

detected at lower size of jump in the parameter matrix

• Test based on the spectral norm of the Matrix CUSUM statistics

• minimax optimal in T up to log logT ; up to log n in n

• robust to missing links

• works for networks with changing size: generalization to

graphon

• Localization of the change point
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