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Classical change-point problem

Gaussian data with change-point in mean:
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Goal

Propose a statistic that will detect the presence of a change-point and

estimate i1t Sy



Extensions of classical model

Classical example: Gaussian independent data with changes in mean
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Extensions:
e Dependency in the data: the noise ; is a time series (ARIMA,
GARCH...); changes in mean
e Changes in mean and variance

e Changes in the parameter of X, ..., X7 (variance, parameter of
ARMA), mean is constant

e Non-Gaussian processes: Poisson process, random graph models



Network Analysis

Network analysis is an important research field driven by applications in
social sciences, computer science, biology, and other fields.
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Protein-Protein Interaction Network of Schizophrenia

Ganapathiraju et al, '16, NPJ Schizophr.

4/29



Real-life networks

e The observed network is modeled by a random graph
e The network can evolve over time = dynamic network
e The real-life network is usually sparse : the graph contains few links

e Many of the real-life networks are only partially observed —>
missing links

e The parameters of a networks might abruptly change
Goals

Detect and localize abrupt changes in the parameter matrix of a sparse
dynamic network: change-point detection and estimation
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Graph Notations

A (simple, undirected graph) G = (E, V) consists of

e aset of vertices V ={1,...n}

e aset of edges E C {{i,j}:i,j €V andi#j}
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Graph Notations

A (simple, undirected graph) G = (E, V) consists of

e aset of vertices V ={1,...n}

e asetof edges E C {{i,j}:i,j€ Vandi#}

1 2 01001
\ 10110

A=| 01010

5 : 0110 1
10010

The corresponding adjacency matrix is denoted A = (Aj) € {0,1}"*",
where
Ai =1 << (i,j)e E

)

6/29



Inhomogeneous random graph model

Observations: a sequence of random graphs represented by their
adjacency matrices A= {Af, 1<t < T}

i i

e Simple undirected graphs G with n vertices
e Adjacency matrix A* = (A%) € {0,1}"*"™:
e The graph G contains the edge (i, ) iff AL =1
° Afj are independent Bernoulli with the connection probability

O =PA;=1), 1<j<i<n

e Connection probability matrix © = (©f) € [0,1]"*" is
symmetric with zero diagonal

e Sparsity parameter: p, = max; ||©|oo
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Modeling sparsity

Data: sequence of adjacency matrices A = {Af, 1 <t < T} with i.i.d.
Afj ~ Bernoulli(@fj)

Sparsity

e A sparse graph has a few links, connection probability tends to zero:
©}f — 0 as n — oo for some (or all) (i, /)

. | = mtaX||@t||OC with the sparsity assumption

pn—0, n— o0

Dense Graph Sparse Graph

Pn !

S
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Change-point problem

“Signal + Noise” model:
Al=0"+ W' 1<t<T,
where W?* is a matrix of centered independent Bernoulli variables

The connection probability matrix ©! might

. e’ 1<t<r7
Q0 +A07, 74+1<t<T

The change-point 7 is

0% 8% + AOT are the connection probability matrices before and

after the change

e AO7 is a symmetric jump matrix

The amount of change is measured by ||AO7||

Goals:
Ho: A©@" =0V7vsHy: 37:||AO"|| > r, 7 >0 and T
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References

e Change-point localization
e Bhattacharjee, Banerjee & Michailidis 20
Single CP estimation in SBM
e Wang, Yu & Rinaldo '21
Multiple CP estimation, minimax rates

e Change-point detection
e Chen, Zhou & Lin '20

test statistic based on operator norm of the jump matrix estimator;
asymptotic results

e Wang, Yu & Rinaldo '21

results on detection of zero CP
e Two-sample testing

e Tang, Athreya, Sussman, Lyzinski & Priebe '17

test statistic based on spectral embedding, bootstrap

e Ghoshdastidar, Gutzeit, Carpentier & von Luxburg '20

two tests, minimax separation rates
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Problem Statement

We observe the sequence of adjacency matrices A = (Al,... AT) such
that A' = ©f + WT, where
. e’ 1<t<rT
°+AO7, T+1<t<T

Define the set of parameters of a p,-sparse network:

My(nps) = {© € [0,1]": © =07, diag(®) =0, 1, < npn}

Testing problem

Ho: ©° ¢ M,(p,), AO" =0 forall1<7< T
against

Hy:31<7<T: 0°0°%°+A07 € M,(p,) and
T
a(5)1867 22 > Ror
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Change-point energy

° quantifies the detection difficulty:
T
&(r) = (%) 1867 |2-2.

o g(t)=t(1—1t), tc[0,1] = =
it is easier to detect/estimate a CP in the middle rather that at the
border

e CP detection: testing whether the energy is zero or at least
Rn,T > 0:

Ho: &(7) =0forall 7 against Hy: £(7) > R, 1 for some T
Goals

e Find a minimal detectable energy rate: R, 1+ < 7?

e Propose an optimal test/estimator that will detects a CP having
minimal detectable energy
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References: testing problem

Partial answers

e Optimal change point detection and localization in sparse
dynamic networks [Wang, Yu & Rinaldo '21]

e Change-point localization and detection

e Detection procedure requires two independent samples
e Separation rate in terms of the Frobenius norm ||A©||¢
e Up to a log'"® T factor in the localization rate

e Two-sample hypothesis testing for inhomogeneous random
graphs [Ghoshdastidar, Gutzeit, Carpentier & von Luxburg '20]

e Two-sample testing problem: 7 is known

e Separation rate for spectral and Frobenius norms and
corresponding tests

e Additional log n factor in the minimax detection rate
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CUSUM statistic

e Observations: X; =0+ A01L{i >7}+&,i=1,....n
o &~ Ny(0,1y) are i.i.d. d-dimensional Gaussian r.v.
e Means 0 and 6 4+ A6 before and after the change-point 7

CUSUM statistic

Compare means before and after each point 1 <t < T — 1:

(T —t) 1y 1§
Zr(e) =y =7 (XX 7 X X)
i=1 =il
. 7 =arg Lmax_ 1 Z7(t)l2
. with critical set {HZT(t)Hz > Ch—a,T,d}
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Test statistic

We observe A = (Al,... AT) such that A* = ©f + W!, where at some
unknown time 1 < 7 < T there is a change in ©:

L e, 1<t<r
Q0+ A0, 74+1<t<T

Matrix CUSUM statistic

(T (1<, 1 & 3
Zr(t) = - (t;A—T_tZA , t=1,...,T—1

s=t+1

e Zr(t): difference between the average number of connections

before and after time t

e Change in O at time 7 = the value of Zy(t) is maximal in the
neighborhood of 7

o :
e We detect a change in ©F at 7 if 152



Model for the Matrix CUSUM statistic

"Signal +noise” model for Z1

Z7(t) = —pr(t)AOT +&(t), t=1,...,T -1

e The centered noise is

£ = t(TT_ : (12‘”5_ Tl—t ,Zl Ws)

The true CP 7 maximizes pur(t):

t=1,...,T

- T(TTi g ﬁq(;)

= q(r/T)[A07]|

10 20 30 40 S50 60 70 80 90
s=1,...,99
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What norm to choose?

The test is based on the norm of the Matrix CUSUM statistic:
e 1{ Zr(t)|| > Han } —
Un,T max || Z7 ()] n,T

Intuitive idea
We have Z7(t) = —pr(t)AOT +&(t), t=1,...,T -1

e ||[A®7|| should be larger than ||£(t)||

e What about the Frobenius norm? Assume that e,?j ~ pp. Then
E[¢(t)] = pn and

E||£(¢t)]|? AO7||2
€)1l ~ pn > I e ~ o

~
n? n? "
=

e The operator norm of {(t) can be controlled by the

= choose ||Z7(t)||op as a test statistic

17/29



Testing for a change at a given point 7

e Calculate the Matrix CUSUM statistic:

7 T
T — 1 5 1 s
)= T(TT)(tZA Ly A>., =1 T
s=1 s=7+1

e Calculate the operator norm of Z7(7): || Z7(7)|lop := Tmax(Z7(T))
Testing for a change at a

e The test of significance level « :

detect the change if || Z7(7)|lop > Ha.n

e Approximate quantile H, , is found from the matrix Bernstein
inequality:
Houn = o/ npn log(n/a)

where ¢, is an absolute constant
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Testing for a change at an unknown point

e Caculate the test statistics || Z7(t)||op for t =1,..., T — 1.

e Take a grid T that approximates the set 1,..., T

Testing at an unknown point

e The test of significance level « :

detect the change if ma7>_<||ZT(l‘)HOp > Hon T
te ’

o Ha,n= coy/np,log(nlog [T]/a)

Choice of the grid 7T
e If7T={1,...,T —1} = log T factor in the minimal detectable signal

° (Liu, Gao & Samworth '21): take 7 = 7- U TF, where
TL:{2k, k=0,..., Llog2(g>j}, TR:{T—Zk, k=0,..., Llog2<g>j}.

= only loglog T factor in the minimal detectable signal
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Theoretical results

Let o € (0,1) be a given significance level and n > 1/a.

Minimal detectable energy

npn
a(r/ T|A8]lop = /2

Testing at a given change-point 7:

o Assume that q(/T)|AO]op > Gt ”ﬁ”

Then our test detects a change with type | and Il errors < «

Testing at an unknown change -point:

e Assume that g(7/T)||AB|op > Cz\/n7p-n

Then the test over the dyadic grid detects a change with type | and
Il errors < v
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ge-point estimation

Change-point estimator

The estimator of 7 maximizes the operator norm of the Matrix CUSUM
test statistic:
Tn=arg max | Zr(t)llop

Theoretical guarantees (Enikeeva and Klopp '21):

e Let v € (0,1). The estimated change-point 7 satisfies

npn 1/2
L (%22 10g(nT /7)) .
T—7| <3¢ ZL1l=7.

a(r/T)|A8llop

P

e Wang et al (2021): if

alr/T)I20]r 5 4/ e T

then no consistent change-point estimator can exist.
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Numerical experiments

We applied three tests to the observations Al,... AT:
e test )]  at the given change-point 7 with the threshold

e test ¢, 7 over the dyadic grid T

e test Y/7(Y) based on the maximum over {1,..., T —1}

Parameters
e Test are calibrated at the level o = 0.05, the threshold is

_ Lllog(n|T|/a) (1log?(n|T|/a) L2
Go,n,T(t) = 3 VTa(t/T) (9 T/ T) + 2npn Iog(n/a)) , EET-
° pn is set to n=1/2 np, = n/?
° use the average link number

NPy = max: Q({Z,”:l AL j=1,..., n}70.9), where Q(Z, a) is
the a-level empirical quantile of the sample Z.

L — _£()
° : ENR = oo/
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Adaptation to the unknown sparsity level

Test powers depending on the ENR for n =100, 7/T = 0.5
for known np, and estimated sparsity

Test power for T' =250, n =100, 7 =125
T

Test, power for T' =100, n =100, 7 =50
—
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SBM with 3 communities and change

SBM with 2 communities and change
probability between

in connection probability between in connection
communities, T = 250.
Sparsity: np, = 7.94, np, = 12.91 Sparsity: np, = 7.26, np, = 11.68
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Transport for London (TfL) Open Data

London Bicycle Sharing Network data’

e Data collected since 2012
e ID of each bicycle

e |ID and name of the origin and the destination trip stations

journey (rental) starting and ending time and date

ID and the duration of each trip

We focus on

e the period from June 24, 2012 to August 31, 2012

"https://api.tfl.gov.uk
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Transport for London (TfL) Open Data
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nsport for London (TfL) Open Data

e Dynamic network: a sequence of T = 69 daily observations

e Each observation: a graph with n = 595 vertices
corresponding to the bike rental stations

e Two vertices are connected if

e the minimal trip duration is not less than 3 minutes

e the number of trips is greater than a predefined threshold

e 0.9975-level empirical quantile of the distribution of the total
number of trips between every couple of stations

e Average number of links np, = 43.2319 (over T = 69
observations)

e Sparsity p, = 0.0727 =< n= 04
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Transport for London (TfL) Open Data

The values of the matrix CUSUM statistic during the whole period

Matrix CUSUM test statistic, June 24 - August 31, 2012

30 End of the Olympics
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The test detects the change at o = 0.05; the estimated CP corresponds
to the day of the arrival of the Olympic Torch (July, 22 2012).
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Transport for London

Zoom to the period of 31 day from July 23 to August, 22

Matrix CUSUM statistic, July 23 - August 22, 2012
T T

a0p

End of the Olympids

The test detects the presence of a change. The CP estimator gives the
End of the Olympics day. = Use multiple testing methods for multiple

change-point localization
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e Minimax separation rate for the change-point energy

npn

q(1/ T AOT 22 =y | =

e Sparsity: p, = m;:ax||@t||OO
e Change points that are away from the end points may be
detected at lower size of jump in the parameter matrix

e Test based on the spectral norm of the Matrix CUSUM statistics

e minimax optimal in T up to loglog T; up to lognin n

e robust to missing links

e works for networks with changing size: generalization to
graphon

e Localization of the change point
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