Particle-based numerical modeling of a thin granular layer subjected to oscillating flow

Communications in Nonlinear Science and Numerical Simulation Volume 97, June 2021

B. Crespin, M. G. Clerc, G. Jara-Schulz, M. Kowalczyk

Université de Limoges, XLIM/ASALI, UMR CNRS 7252 Center for Mathematical Modeling, UMI (2807), Universidad de Chile

Journée MIRES Axe 2 - Poitiers, 02/06/2022

Fluidized granular media

• Granular matter: small, solid components that behave like a liquid and/or solid

 To fluidize such a system, external energy must be supplied, for example by mechanical agitation or an up-flow of gas strong enough to counter gravity

• We propose a **simple numerical model** to characterize **self-organization phenomena**

Experimental setup

- Monodisperse bronze particles of diameter d = ~350 µm
- Thin granular layer (5d high, 400d long, and **10d deep**)
- Periodic airflow comes from an air compressor and is regulated by an electromechanical valve
- Control parameters:
 - f₀: frequency of the modulated pressure
 - $\circ \quad \Delta P$: amplitude

Homogeneous regime

Moving kink regime (stroboscopic view)

Particle-based numerical modeling

- Simplified 2D particles model :
 - elastic collisions between solid particles
 - \circ the air flow is modelled by a drag force related to h^3

Numerical results

Experimental vs numerical results (regimes)

Experimental vs numerical results (kink displacement)

Numerical results (pattern wavelength vs friction)

... difficult to reproduce with real experiments

Discussion

- A minimal model in good agreement with experiments:
 - first step to describe the dynamics of complex phenomena through coarse-graining processes, and derive mathematical models
 - makes it possible to study new behaviours
 - ... but not able to reproduce all phenomena (eg convection rolls)

- Next steps:
 - Towards more realism ?
 - GPU implementation in 3D ?
 - represent airflow ?
 - Towards less realism ?
 - heightfield-based discrete model ?

